[Fri Nov 01 07:10:42 SAST 2024] [MD] [warn] 'Starting MedeA Core 3.7.0' Opening the database Sucessfully opened MedeA database from /home/medea/MD/Databases/MedeA.db Nudged Elastic Band for mapping the minimum energy path between the initial system M653-VERSTEL-neb0_image00.cif and the final system M653-VERSTEL-neb0_image06.cif with 5 intermediate images and a spring constant of 5 eV/Ang^2 and 2 refinement steps. The image closest to a saddle point is allowed to climb up into the saddle point if the largest force on an atom is smaller than 1.0 eV/Ang. The initial images are created from specified systems. In a second step, transition states are searched for all identified saddle points by the Elastic Band Methods. In a last step, optimization of transition states by the RMM-DIIS algorithm is attempted. Optimization parameters for the first step: Convergence: 1.0 eV/Ang Number of steps: 200 Diagonal elements of the inverse Hessian are initially set to 0.001 Ang^2/eV. ------------------------------------------------------------------------ VASP parameters =============== This is a calculation based on density functional theory and the GGA-PBE exchange-correlation functional for describing the interactions. Van der Waals interactions are added by means of a forcefield (DFT+D3 approach of S. Grimme with Becke-Johnson-damping). This is a spin-polarized magnetic calculation using 'accurate' precision and a default planewave cutoff energy of 400.000 eV. The electronic iterations convergence is 1.00E-05 eV using the Fast (Davidson and RMM-DIIS) algorithm and reciprocal space projection operators. Explicit k-mesh of 3x3x1 used This corresponds to actual k-spacings of 0.218 x 0.218 x 0.216 per Angstrom. The k-mesh is forced to be centered on the gamma point. Symmetry is not used, i.e. the k-point set is not reduced and symmetrizations do not occur. Using first order Methfessel-Paxton smearing with a width of 0.05 eV. Other non-default parameters: Extrafine augmentation grid for accurate forces is TRUE Extra input is GGA = PE NCORE = 16 NPAR = 8 EDIFFG = -1.0e-02 SYSTEM = 1 PREC = Accurate ENCUT = 400.000 IBRION = -1 NSW = 0 ISIF = 2 NELMIN = 2 EDIFF = 1.0e-05 VOSKOWN = 1 NBLOCK = 1 ISYM = 0 NELM = 200 ALGO = Fast (Davidson and RMM-DIIS) IVDW = 12 VDW_S6 = 1.000 VDW_S8 = 0.7875 VDW_A1 = 0.4289 VDW_A2 = 4.4407 ISPIN = 2 INIWAV = 1 ISTART = 0 ICHARG = 2 LWAVE = .FALSE. LCHARG = .FALSE. ADDGRID = .TRUE. ISMEAR = 1 SIGMA = 0.05 LREAL = .FALSE. LSCALAPACK = .FALSE. RWIGS = 1.30 1.02 0.32 0.73 NWRITE = 2 POTIM = 0.25 IDIPOL = 3 LDIPOL = .TRUE. Do not use symmetry is TRUE ========================================== Using version 4.0 GGA-PBE / PAW potentials: Pt PAW_PBE Pt 04Feb2005 O PAW_PBE O 08Apr2002 S PAW_PBE S 06Sep2000 H PAW_PBE H 15Jun2001 VASP energy of initial and final boundary images in kJ/mol per cell: Image Energy (kJ/mol) Total magnetic moment (muB) ------------------- ------------------------- -------------------------------- neb0_image00 -45222.244 0.002 neb0_image06 -45389.783 0.000 Total and image energies below are given with respect to the energy of the initial boundary image in kJ/mol per cell Iter Energy_total max grad image01 image02 image03 image04 image05 Climbing Iter_accepted ---- ------------ --------- ------------ ------------ ------------ ------------ ------------ -------- ------------- 1 10034.61 170.27376 888.723 2160.663 3741.673 2654.031 589.524 --- 2 5296.30 30.08412 821.907 1517.504 1567.190 1037.201 352.496 --- 1 3 4538.38 18.51201 757.557 1238.305 1396.721 889.131 256.666 --- 2 4 3384.68 11.98554 596.924 926.769 1081.531 626.162 153.294 --- 3 5 2821.39 12.51069 502.305 715.540 938.404 522.509 142.636 --- 4 6 2705.76 11.51265 440.940 761.125 886.604 474.943 142.149 --- 5 7 2523.80 10.47031 404.068 654.319 854.279 480.914 130.216 --- 6 8 2419.48 8.91622 365.912 719.943 828.749 405.311 99.570 --- 7 9 2092.91 5.83879 282.514 693.702 766.227 320.699 29.764 --- 8 10 2020.58 8.71377 220.004 718.942 716.029 328.077 37.533 --- 9 11 1976.86 21.48299 176.750 639.729 683.252 343.172 133.956 --- 10 12 1829.45 18.73495 165.296 559.039 669.641 336.680 98.791 --- 11 13 1625.94 8.47580 159.139 528.870 694.296 256.939 -13.309 --- 12 14 1579.98 4.55897 145.796 557.432 681.466 223.481 -28.192 --- 13 15 1509.96 9.18170 77.445 559.057 629.282 238.993 5.181 --- 14 16 1379.43 9.20764 64.108 497.360 627.252 182.915 7.790 --- 15 17 1333.46 8.37046 47.286 494.230 615.339 180.085 -3.478 --- 16 18 1246.60 6.54625 21.832 491.216 602.104 165.582 -34.129 --- 17 19 1141.66 4.65664 4.716 489.210 591.017 134.361 -77.648 --- 18 20 1102.30 9.21133 -4.332 485.126 575.982 106.480 -60.955 --- 19 21 2227.98 19.08421 -6.660 1625.711 569.209 102.429 -62.714 --- 22 1154.17 9.69279 -8.613 514.931 611.831 100.102 -64.086 --- 20 23 1192.23 5.67118 -15.322 471.518 635.952 194.997 -94.917 --- 21 24 1077.27 5.19318 -25.826 505.292 537.520 172.920 -112.636 --- 22 25 861.83 4.82974 -44.384 447.158 519.070 56.265 -116.283 --- 23 26 846.76 4.74835 -36.587 443.160 512.696 27.319 -99.829 --- 24 27 811.90 3.92787 -38.876 447.164 488.536 20.846 -105.769 --- 25 28 762.10 3.62806 -46.621 504.123 448.339 -18.569 -125.167 --- 26 29 747.83 7.03205 -26.202 478.539 431.812 -28.393 -107.924 --- 27 30 761.31 12.26573 33.422 390.545 392.424 -0.876 -54.205 --- 28 31 790.42 12.36623 50.923 365.272 403.250 15.758 -44.785 --- 29 32 632.35 10.17759 -7.763 345.683 400.436 -35.314 -70.691 --- 30 33 5786.64 45.49106 -43.874 333.613 5657.546 -58.773 -101.876 --- 31 34 832.32 43.48612 -61.526 320.825 329.999 350.842 -107.819 --- 35 507.13 18.52239 -63.143 326.078 317.290 42.902 -115.992 --- 32 36 355.51 6.78707 -84.174 320.964 308.943 -86.356 -103.864 --- 33 37 350.23 6.14396 -80.833 291.621 310.206 -68.592 -102.170 --- 34 38 458.62 6.04081 -90.904 267.835 431.729 -46.514 -103.528 --- 35 39 320.97 8.92723 -26.257 229.970 266.865 -52.749 -96.856 --- 36 40 257.68 6.70918 -53.817 176.390 274.218 -46.338 -92.775 --- 37 41 3502.89 23.06937 -50.460 71.737 3589.211 -17.709 -89.886 --- 38 42 181.78 8.72730 -61.576 59.456 354.096 -59.363 -110.833 --- 39 43 17.74 6.60023 -82.700 69.327 272.423 -107.002 -134.303 --- 40 44 -17.52 6.13592 -72.002 11.826 270.033 -99.673 -127.707 --- 41 45 60.96 11.02085 -53.009 -42.342 310.111 -43.662 -110.140 --- 42 46 -19.47 9.53970 -68.528 -38.782 271.975 -61.420 -122.718 --- 43 47 -73.19 7.82497 -81.496 -41.781 257.396 -76.191 -131.120 --- 44 48 -119.07 3.73110 -91.872 -50.358 271.221 -107.171 -140.893 --- 45 49 -177.32 3.01039 -93.458 -60.826 236.115 -114.064 -145.089 --- 46 50 -164.75 4.77074 -94.034 -68.444 250.013 -105.729 -146.552 --- 47 51 -188.30 4.55065 -96.126 -67.966 229.023 -106.462 -146.771 --- 48 52 -208.79 1.95524 -103.203 -67.575 224.942 -115.568 -147.391 --- 49 53 -221.99 1.76585 -106.249 -70.476 222.945 -119.078 -149.135 --- 50 54 -240.54 3.11826 -108.936 -75.204 214.696 -120.719 -150.379 --- 51 55 -218.82 2.17431 -111.037 -75.345 241.765 -123.529 -150.674 --- 52 56 -222.71 1.17479 -112.768 -75.699 241.593 -125.834 -150.000 --- 53 57 -253.47 1.13309 -113.077 -76.659 213.906 -126.741 -150.903 --- 54 58 -260.58 2.06143 -112.184 -80.752 212.029 -128.493 -151.181 --- 55 59 -264.17 2.51092 -111.394 -82.529 209.681 -128.092 -151.835 --- 56 60 -269.27 2.38128 -113.035 -82.607 206.841 -128.039 -152.434 --- 57 61 -274.19 1.95776 -115.010 -82.867 204.512 -128.222 -152.601 --- 58 62 -259.23 1.81655 -116.252 -84.292 221.443 -127.938 -152.193 --- 59 63 -280.03 3.11005 -117.553 -87.134 201.604 -124.911 -152.035 --- 60 64 -289.41 3.67699 -118.629 -90.524 196.286 -125.026 -151.519 --- 61 65 -297.72 3.07338 -119.950 -91.699 193.562 -128.207 -151.430 --- 62 66 -288.67 1.46737 -120.116 -92.190 209.421 -133.061 -152.727 --- 63 67 -305.47 1.41535 -118.756 -92.806 192.411 -133.618 -152.698 --- 64 68 -306.89 1.53583 -120.160 -93.317 193.104 -133.650 -152.869 --- 65 69 -309.59 1.06117 -121.560 -93.938 193.582 -134.262 -153.415 --- 66 70 -289.18 1.01836 -121.904 -94.437 215.045 -134.460 -153.429 --- 67 71 -311.57 2.00254 -124.691 -105.672 199.275 -130.013 -150.467 --- 68 72 -327.81 1.65910 -125.675 -104.958 186.811 -131.725 -152.266 --- 69 73 -329.07 1.56614 -126.236 -105.396 186.521 -131.351 -152.611 --- 70 74 -325.80 1.81890 -126.314 -107.182 187.296 -128.342 -151.256 --- 71 75 -320.92 2.19940 -126.178 -109.073 188.697 -124.746 -149.626 --- 72 76 -313.88 2.46790 -125.780 -111.564 190.663 -118.859 -148.341 --- 73 77 -309.30 2.62508 -125.624 -114.199 192.292 -112.717 -149.055 --- 74 78 -319.52 2.07893 -127.212 -117.631 188.270 -112.774 -150.172 --- 75