vasp.5.4.4.18Apr17-6-g9f103f2a35 (build May 12 2020 04:58:55) complex MD_VERSION_INFO: Compiled 2020-05-12T11:58:55-UTC in devlin.sd.materialsdesign. com:/home/medea2/data/build/wwolf/vasp-gpu5.4.4/13047/x86_64/src/src/build/std from svn 13047 This VASP executable licensed from Materials Design, Inc. executed on Lin64 date 2024.10.03 12:11:50 running on 48 total cores distrk: each k-point on 48 cores, 1 groups distr: one band on NCORES_PER_BAND= 1 cores, 48 groups -------------------------------------------------------------------------------------------------------- INCAR: POTCAR: PAW_PBE Bi_d 06Sep2000 POTCAR: PAW_PBE W_sv 04Sep2015 POTCAR: PAW_PBE O 08Apr2002 ----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | For optimal performance we recommend to set | | NCORE= 4 - approx SQRT( number of cores) | | NCORE specifies how many cores store one orbital (NPAR=cpu/NCORE). | | This setting can greatly improve the performance of VASP for DFT. | | The default, NCORE=1 might be grossly inefficient | | on modern multi-core architectures or massively parallel machines. | | Do your own testing !!!! | | Unfortunately you need to use the default for GW and RPA calculations. | | (for HF NCORE is supported but not extensively tested yet) | | | ----------------------------------------------------------------------------- POTCAR: PAW_PBE Bi_d 06Sep2000 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 6 number of lm-projection operators is LMMAX = 18 POTCAR: PAW_PBE W_sv 04Sep2015 local pseudopotential read in partial core-charges read in partial kinetic energy density read in kinetic energy density of atom read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 6 number of lm-projection operators is LMMAX = 18 POTCAR: PAW_PBE O 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in kinetic energy density of atom read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 ----------------------------------------------------------------------------- | | | ADVICE TO THIS USER RUNNING 'VASP/VAMP' (HEAR YOUR MASTER'S VOICE ...): | | | | You have a (more or less) 'large supercell' and for larger cells | | it might be more efficient to use real space projection opertators | | So try LREAL= Auto in the INCAR file. | | Mind: For very accurate calculation you might also keep the | | reciprocal projection scheme (i.e. LREAL=.FALSE.) | | | ----------------------------------------------------------------------------- PAW_PBE Bi_d 06Sep2000 : energy of atom 1 EATOM=-1959.2045 kinetic energy error for atom= 0.0040 (will be added to EATOM!!) PAW_PBE W_sv 04Sep2015 : energy of atom 2 EATOM=-1865.5791 kinetic energy error for atom= 0.0026 (will be added to EATOM!!) PAW_PBE O 08Apr2002 : energy of atom 3 EATOM= -432.3788 kinetic energy error for atom= 0.0208 (will be added to EATOM!!) POSCAR: Bi2WO6_hbb positions in direct lattice No initial velocities read in exchange correlation table for LEXCH = 8 RHO(1)= 0.500 N(1) = 2000 RHO(2)= 100.500 N(2) = 4000 -------------------------------------------------------------------------------------------------------- ion position nearest neighbor table 1 0.024 0.016 0.076- 30 2.22 31 2.28 32 2.34 26 2.46 29 2.51 28 2.53 3 3.72 3 3.72 4 3.76 4 3.76 2 3.77 2 3.77 2 0.976 0.516 0.924- 29 2.22 32 2.28 31 2.34 25 2.46 30 2.51 27 2.53 4 3.72 4 3.72 3 3.76 3 3.76 1 3.77 1 3.77 3 0.476 0.516 0.076- 32 2.22 29 2.28 30 2.34 28 2.46 31 2.51 26 2.53 1 3.72 1 3.72 2 3.76 2 3.76 4 3.77 4 3.77 4 0.524 0.016 0.924- 31 2.22 30 2.28 29 2.34 27 2.46 32 2.51 25 2.53 2 3.72 2 3.72 1 3.76 1 3.76 3 3.77 3 3.77 5 0.975 0.029 0.424- 35 2.22 34 2.28 33 2.34 13 2.47 15 2.51 36 2.51 7 3.72 7 3.72 8 3.76 8 3.76 6 3.77 6 3.77 6 0.025 0.529 0.576- 36 2.22 33 2.28 34 2.34 14 2.47 16 2.51 35 2.51 8 3.72 8 3.72 7 3.76 7 3.76 5 3.77 5 3.77 7 0.525 0.529 0.424- 33 2.22 36 2.28 35 2.34 15 2.47 13 2.51 34 2.51 5 3.72 5 3.72 6 3.76 6 3.76 8 3.77 8 3.77 8 0.475 0.029 0.576- 34 2.22 35 2.28 36 2.34 16 2.47 14 2.51 33 2.51 6 3.72 6 3.72 5 3.76 5 3.76 7 3.77 7 3.77 9 0.496 0.992 0.250- 23 1.81 19 1.82 15 1.89 28 1.89 17 2.18 21 2.19 10 0.504 0.492 0.750- 24 1.81 20 1.82 16 1.89 27 1.89 18 2.18 22 2.19 11 0.004 0.492 0.250- 21 1.81 17 1.82 13 1.89 26 1.89 19 2.18 23 2.19 12 0.996 0.992 0.750- 22 1.81 18 1.82 14 1.89 25 1.89 20 2.18 24 2.19 13 0.918 0.425 0.357- 11 1.89 5 2.47 7 2.51 14 0.082 0.925 0.643- 12 1.89 6 2.47 8 2.51 15 0.582 0.925 0.357- 9 1.89 7 2.47 5 2.51 16 0.418 0.425 0.643- 10 1.89 8 2.47 6 2.51 17 0.273 0.672 0.271- 11 1.82 9 2.18 18 0.727 0.172 0.729- 12 1.82 10 2.18 19 0.227 0.172 0.271- 9 1.82 11 2.18 20 0.773 0.672 0.729- 10 1.82 12 2.18 21 0.788 0.731 0.229- 11 1.81 9 2.19 22 0.212 0.231 0.771- 12 1.81 10 2.19 23 0.712 0.231 0.229- 9 1.81 11 2.19 24 0.288 0.731 0.771- 10 1.81 12 2.19 25 0.924 0.911 0.858- 12 1.89 2 2.46 4 2.53 26 0.076 0.411 0.142- 11 1.89 1 2.46 3 2.53 27 0.576 0.411 0.858- 10 1.89 4 2.46 2 2.53 28 0.424 0.911 0.142- 9 1.89 3 2.46 1 2.53 29 0.741 0.739 0.002- 2 2.22 3 2.28 4 2.34 1 2.51 30 0.259 0.239 0.998- 1 2.22 4 2.28 3 2.34 2 2.51 31 0.759 0.239 0.002- 4 2.22 1 2.28 2 2.34 3 2.51 32 0.241 0.739 0.998- 3 2.22 2 2.28 1 2.34 4 2.51 33 0.759 0.753 0.502- 7 2.22 6 2.28 5 2.34 8 2.51 34 0.241 0.253 0.498- 8 2.22 5 2.28 6 2.34 7 2.51 35 0.741 0.253 0.502- 5 2.22 8 2.28 7 2.34 6 2.51 36 0.259 0.753 0.498- 6 2.22 7 2.28 8 2.34 5 2.51 LATTYP: Found a simple orthorhombic cell. ALAT = 5.5161652500 B/A-ratio = 1.0008145931 C/A-ratio = 3.0254883136 Lattice vectors: A1 = ( 5.5161652500, 0.0000000000, 0.0000000000) A2 = ( 0.0000000000, 5.5206586800, 0.0000000000) A3 = ( 0.0000000000, 0.0000000000, 16.6890935000) Analysis of symmetry for initial positions (statically): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple orthorhombic supercell. Subroutine GETGRP returns: Found 4 space group operations (whereof 1 operations were pure point group operations) out of a pool of 8 trial point group operations. The static configuration has the point symmetry C_1 . The point group associated with its full space group is C_2v. Analysis of symmetry for dynamics (positions and initial velocities): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple orthorhombic supercell. Subroutine GETGRP returns: Found 4 space group operations (whereof 1 operations were pure point group operations) out of a pool of 8 trial point group operations. The dynamic configuration has the point symmetry C_1 . The point group associated with its full space group is C_2v. Analysis of structural, dynamic, and magnetic symmetry: ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple orthorhombic supercell. Subroutine GETGRP returns: Found 4 space group operations (whereof 1 operations were pure point group operations) out of a pool of 8 trial point group operations. The magnetic configuration has the point symmetry C_1 . The point group associated with its full space group is C_2v. Subroutine INISYM returns: Found 4 space group operations (whereof 1 operations are pure point group operations), and found 1 'primitive' translations KPOINTS: Automatic mesh Automatic generation of k-mesh. Space group operators: irot det(A) alpha n_x n_y n_z tau_x tau_y tau_z 1 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 -1.000000 180.000000 0.000000 0.000000 1.000000 0.500000 0.000000 0.000000 3 1.000000 180.000000 0.000000 1.000000 0.000000 0.000000 0.500000 0.000000 4 -1.000000 180.000000 1.000000 0.000000 0.000000 0.500000 0.500000 0.000000 Subroutine IBZKPT returns following result: =========================================== Found 18 irreducible k-points: Following reciprocal coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.200000 0.000000 0.000000 2.000000 0.400000 0.000000 0.000000 2.000000 0.000000 0.200000 0.000000 2.000000 0.200000 0.200000 0.000000 4.000000 0.400000 0.200000 0.000000 4.000000 0.000000 0.400000 0.000000 2.000000 0.200000 0.400000 0.000000 4.000000 0.400000 0.400000 0.000000 4.000000 0.000000 0.000000 0.333333 2.000000 0.200000 0.000000 0.333333 4.000000 0.400000 0.000000 0.333333 4.000000 0.000000 0.200000 0.333333 4.000000 0.200000 0.200000 0.333333 8.000000 0.400000 0.200000 0.333333 8.000000 0.000000 0.400000 0.333333 4.000000 0.200000 0.400000 0.333333 8.000000 0.400000 0.400000 0.333333 8.000000 Following cartesian coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.036257 0.000000 0.000000 2.000000 0.072514 0.000000 0.000000 2.000000 0.000000 0.036228 0.000000 2.000000 0.036257 0.036228 0.000000 4.000000 0.072514 0.036228 0.000000 4.000000 0.000000 0.072455 0.000000 2.000000 0.036257 0.072455 0.000000 4.000000 0.072514 0.072455 0.000000 4.000000 0.000000 0.000000 0.019973 2.000000 0.036257 0.000000 0.019973 4.000000 0.072514 0.000000 0.019973 4.000000 0.000000 0.036228 0.019973 4.000000 0.036257 0.036228 0.019973 8.000000 0.072514 0.036228 0.019973 8.000000 0.000000 0.072455 0.019973 4.000000 0.036257 0.072455 0.019973 8.000000 0.072514 0.072455 0.019973 8.000000 Subroutine IBZKPT_HF returns following result: ============================================== Found 75 k-points in 1st BZ the following 75 k-points will be used (e.g. in the exchange kernel) Following reciprocal coordinates: # in IRBZ 0.000000 0.000000 0.000000 0.01333333 1 t-inv F 0.200000 0.000000 0.000000 0.01333333 2 t-inv F 0.400000 0.000000 0.000000 0.01333333 3 t-inv F 0.000000 0.200000 0.000000 0.01333333 4 t-inv F 0.200000 0.200000 0.000000 0.01333333 5 t-inv F 0.400000 0.200000 0.000000 0.01333333 6 t-inv F 0.000000 0.400000 0.000000 0.01333333 7 t-inv F 0.200000 0.400000 0.000000 0.01333333 8 t-inv F 0.400000 0.400000 0.000000 0.01333333 9 t-inv F 0.000000 0.000000 0.333333 0.01333333 10 t-inv F 0.200000 0.000000 0.333333 0.01333333 11 t-inv F 0.400000 0.000000 0.333333 0.01333333 12 t-inv F 0.000000 0.200000 0.333333 0.01333333 13 t-inv F 0.200000 0.200000 0.333333 0.01333333 14 t-inv F 0.400000 0.200000 0.333333 0.01333333 15 t-inv F 0.000000 0.400000 0.333333 0.01333333 16 t-inv F 0.200000 0.400000 0.333333 0.01333333 17 t-inv F 0.400000 0.400000 0.333333 0.01333333 18 t-inv F -0.200000 0.000000 0.000000 0.01333333 2 t-inv F -0.400000 0.000000 0.000000 0.01333333 3 t-inv F -0.200000 0.200000 0.000000 0.01333333 5 t-inv F -0.400000 0.200000 0.000000 0.01333333 6 t-inv F -0.200000 0.400000 0.000000 0.01333333 8 t-inv F -0.400000 0.400000 0.000000 0.01333333 9 t-inv F 0.000000 0.000000 -0.333333 0.01333333 10 t-inv F 0.200000 0.000000 -0.333333 0.01333333 11 t-inv F -0.200000 0.000000 -0.333333 0.01333333 11 t-inv F -0.200000 0.000000 0.333333 0.01333333 11 t-inv F 0.400000 0.000000 -0.333333 0.01333333 12 t-inv F -0.400000 0.000000 -0.333333 0.01333333 12 t-inv F -0.400000 0.000000 0.333333 0.01333333 12 t-inv F 0.000000 0.200000 -0.333333 0.01333333 13 t-inv F 0.200000 0.200000 -0.333333 0.01333333 14 t-inv F -0.200000 0.200000 -0.333333 0.01333333 14 t-inv F -0.200000 0.200000 0.333333 0.01333333 14 t-inv F 0.400000 0.200000 -0.333333 0.01333333 15 t-inv F -0.400000 0.200000 -0.333333 0.01333333 15 t-inv F -0.400000 0.200000 0.333333 0.01333333 15 t-inv F 0.000000 0.400000 -0.333333 0.01333333 16 t-inv F 0.200000 0.400000 -0.333333 0.01333333 17 t-inv F -0.200000 0.400000 -0.333333 0.01333333 17 t-inv F -0.200000 0.400000 0.333333 0.01333333 17 t-inv F 0.400000 0.400000 -0.333333 0.01333333 18 t-inv F -0.400000 0.400000 -0.333333 0.01333333 18 t-inv F -0.400000 0.400000 0.333333 0.01333333 18 t-inv F 0.000000 -0.200000 0.000000 0.01333333 4 t-inv T -0.200000 -0.200000 0.000000 0.01333333 5 t-inv T 0.200000 -0.200000 0.000000 0.01333333 5 t-inv T -0.400000 -0.200000 0.000000 0.01333333 6 t-inv T 0.400000 -0.200000 0.000000 0.01333333 6 t-inv T 0.000000 -0.400000 0.000000 0.01333333 7 t-inv T -0.200000 -0.400000 0.000000 0.01333333 8 t-inv T 0.200000 -0.400000 0.000000 0.01333333 8 t-inv T -0.400000 -0.400000 0.000000 0.01333333 9 t-inv T 0.400000 -0.400000 0.000000 0.01333333 9 t-inv T 0.000000 -0.200000 -0.333333 0.01333333 13 t-inv T 0.000000 -0.200000 0.333333 0.01333333 13 t-inv T -0.200000 -0.200000 -0.333333 0.01333333 14 t-inv T -0.200000 -0.200000 0.333333 0.01333333 14 t-inv T 0.200000 -0.200000 0.333333 0.01333333 14 t-inv T 0.200000 -0.200000 -0.333333 0.01333333 14 t-inv T -0.400000 -0.200000 -0.333333 0.01333333 15 t-inv T -0.400000 -0.200000 0.333333 0.01333333 15 t-inv T 0.400000 -0.200000 0.333333 0.01333333 15 t-inv T 0.400000 -0.200000 -0.333333 0.01333333 15 t-inv T 0.000000 -0.400000 -0.333333 0.01333333 16 t-inv T 0.000000 -0.400000 0.333333 0.01333333 16 t-inv T -0.200000 -0.400000 -0.333333 0.01333333 17 t-inv T -0.200000 -0.400000 0.333333 0.01333333 17 t-inv T 0.200000 -0.400000 0.333333 0.01333333 17 t-inv T 0.200000 -0.400000 -0.333333 0.01333333 17 t-inv T -0.400000 -0.400000 -0.333333 0.01333333 18 t-inv T -0.400000 -0.400000 0.333333 0.01333333 18 t-inv T 0.400000 -0.400000 0.333333 0.01333333 18 t-inv T 0.400000 -0.400000 -0.333333 0.01333333 18 t-inv T ----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | The number of bands has been changed from the values supplied | | in the INCAR file. This is a result of running the parallel version. | | The orbitals not found in the WAVECAR file will be initialized with | | random numbers, which is usually adequate. For correlated | | calculations, however, you should redo the groundstate calculation. | | I found NBANDS = 200 now NBANDS = 240 | | | ----------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- Dimension of arrays: k-points NKPTS = 18 k-points in BZ NKDIM = 75 number of bands NBANDS= 240 number of dos NEDOS = 301 number of ions NIONS = 36 non local maximal LDIM = 6 non local SUM 2l+1 LMDIM = 18 total plane-waves NPLWV = 98304 max r-space proj IRMAX = 1 max aug-charges IRDMAX= 88516 dimension x,y,z NGX = 32 NGY = 32 NGZ = 96 dimension x,y,z NGXF= 64 NGYF= 64 NGZF= 192 support grid NGXF= 128 NGYF= 128 NGZF= 384 ions per type = 8 4 24 NGX,Y,Z is equivalent to a cutoff of 9.64, 9.64, 9.56 a.u. NGXF,Y,Z is equivalent to a cutoff of 19.29, 19.27, 19.13 a.u. SYSTEM = Bi2WO6_hbb POSCAR = Bi2WO6_hbb Startparameter for this run: NWRITE = 1 write-flag & timer PREC = normal normal or accurate (medium, high low for compatibility) ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 0 charge: 1-file 2-atom 10-const ISPIN = 2 spin polarized calculation? LNONCOLLINEAR = F non collinear calculations LSORBIT = F spin-orbit coupling INIWAV = 1 electr: 0-lowe 1-rand 2-diag LASPH = F aspherical Exc in radial PAW METAGGA= F non-selfconsistent MetaGGA calc. Electronic Relaxation 1 ENCUT = 520.0 eV 38.22 Ry 6.18 a.u. 10.26 10.26 31.03*2*pi/ulx,y,z ENINI = 520.0 initial cutoff ENAUG = 605.4 eV augmentation charge cutoff NELM = 60; NELMIN= 2; NELMDL= 0 # of ELM steps EDIFF = 0.1E-04 stopping-criterion for ELM LREAL = F real-space projection NLSPLINE = F spline interpolate recip. space projectors LCOMPAT= F compatible to vasp.4.4 GGA_COMPAT = T GGA compatible to vasp.4.4-vasp.4.6 LMAXPAW = -100 max onsite density LMAXMIX = 2 max onsite mixed and CHGCAR VOSKOWN= 1 Vosko Wilk Nusair interpolation ROPT = 0.00000 0.00000 0.00000 Ionic relaxation EDIFFG = -.2E-01 stopping-criterion for IOM NSW = 0 number of steps for IOM NBLOCK = 1; KBLOCK = 1 inner block; outer block IBRION = -1 ionic relax: 0-MD 1-quasi-New 2-CG NFREE = 0 steps in history (QN), initial steepest desc. (CG) ISIF = 2 stress and relaxation IWAVPR = 10 prediction: 0-non 1-charg 2-wave 3-comb ISYM = 3 0-nonsym 1-usesym 2-fastsym LCORR = T Harris-Foulkes like correction to forces POTIM = 0.5000 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run SMASS = -3.00 Nose mass-parameter (am) estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps =****** mass= -0.695E-27a.u. SCALEE = 1.0000 scale energy and forces NPACO = 256; APACO = 16.0 distance and # of slots for P.C. PSTRESS= 0.0 pullay stress Mass of Ions in am POMASS = 208.98183.85 16.00 Ionic Valenz ZVAL = 15.00 14.00 6.00 Atomic Wigner-Seitz radii RWIGS = 1.46 1.30 0.73 virtual crystal weights VCA = 1.00 1.00 1.00 NELECT = 320.0000 total number of electrons NUPDOWN= -1.0000 fix difference up-down DOS related values: EMIN = 10.00; EMAX =-10.00 energy-range for DOS EFERMI = 0.00 ISMEAR = 0; SIGMA = 0.05 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details) IALGO = 58 algorithm LDIAG = T sub-space diagonalisation (order eigenvalues) LSUBROT= F optimize rotation matrix (better conditioning) TURBO = 0 0=normal 1=particle mesh IRESTART = 0 0=no restart 2=restart with 2 vectors NREBOOT = 0 no. of reboots NMIN = 0 reboot dimension EREF = 0.00 reference energy to select bands IMIX = 4 mixing-type and parameters AMIX = 0.40; BMIX = 1.00 AMIX_MAG = 1.60; BMIX_MAG = 1.00 AMIN = 0.10 WC = 100.; INIMIX= 1; MIXPRE= 1; MAXMIX= -45 Intra band minimization: WEIMIN = 0.0000 energy-eigenvalue tresh-hold EBREAK = 0.10E-07 absolut break condition DEPER = 0.30 relativ break condition TIME = 0.40 timestep for ELM volume/ion in A,a.u. = 14.12 95.27 Fermi-wavevector in a.u.,A,eV,Ry = 1.403151 2.651572 26.787609 1.968834 Thomas-Fermi vector in A = 2.525842 Write flags LWAVE = T write WAVECAR LDOWNSAMPLE = F k-point downsampling of WAVECAR LCHARG = T write CHGCAR LVTOT = F write LOCPOT, total local potential LVHAR = F write LOCPOT, Hartree potential only LELF = F write electronic localiz. function (ELF) LORBIT = 0 0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes Dipole corrections LMONO = F monopole corrections only (constant potential shift) LDIPOL = F correct potential (dipole corrections) IDIPOL = 0 1-x, 2-y, 3-z, 4-all directions EPSILON= 1.0000000 bulk dielectric constant Exchange correlation treatment: GGA = -- GGA type LEXCH = 8 internal setting for exchange type VOSKOWN= 1 Vosko Wilk Nusair interpolation EXXOEP = 0 0=HF, 1=EXX-LHF (local Hartree Fock) 2=EXX OEP LHFCALC = T Hartree Fock is set to LSYMGRAD= F symmetrize gradient (conserves proper symmetry) PRECFOCK=normal Normal, Fast or Accurate (Low or Medium for compatibility) LRHFCALC= F long range Hartree Fock LRSCOR = F long range correlation only (use DFT for short range part) LTHOMAS = F Thomas Fermi screening in HF LMODELHF= F short range full HF, long range fraction AEXX ENCUT4O = -1.0 cutoff for four orbital integrals eV LMAXFOCK= 4 L truncation for augmentation on plane wave grid LMAXFOCKAE= -1 L truncation for all-electron charge restoration on plane wave grid NMAXFOCKAE= 1 number of basis functions for all-electron charge restoration LFOCKAEDFT= F apply the AE augmentation even for DFT NKREDX = 1 reduce k-point grid by NKREDY = 1 reduce k-point grid by NKREDZ = 1 reduce k-point grid by SHIFTRED= F shift reduced grid of Gamma HFKIDENT= F idential grid for each k-point ODDONLY = F use only odd q-grid points EVENONLY= F use only even q-grid points HFALPHA = -1.0000 decay constant for conv. correction MCALPHA = 0.0000 extent of test-charge in conv. correction in multipole expansion AEXX = 0.2500 exact exchange contribution HFSCREEN= 0.2000 screening length (either q_TF or 0.3 A-1) HFSCREENC= 0.2000 screening length for correlation (either q_TF or 0.3 A-1) HFRCUT = 0.0000 spherical cutoff for potential kernel ALDAX = 0.7500 LDA exchange part AGGAX = 0.7500 GGA exchange part ALDAC = 1.0000 LDA correlation AGGAC = 1.0000 GGA correlation ENCUTFOCK= -1.0 apply spherical cutoff to Coloumb kernel NBANDSGWLOW= 1 first orbital included in HF term NBLOCK_FOCK= 64 blocking factor in FOCK_ACC Linear response parameters LEPSILON= F determine dielectric tensor LRPA = F only Hartree local field effects (RPA) LNABLA = F use nabla operator in PAW spheres LVEL = F velocity operator in full k-point grid LINTERFAST= F fast interpolation KINTER = 0 interpolate to denser k-point grid CSHIFT =0.1000 complex shift for real part using Kramers Kronig OMEGAMAX= -1.0 maximum frequency DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate RTIME = -0.100 relaxation time in fs (WPLASMAI= 0.000 imaginary part of plasma frequency in eV, 0.658/RTIME) DFIELD = 0.0000000 0.0000000 0.0000000 field for delta impulse in time Orbital magnetization related: ORBITALMAG= F switch on orbital magnetization LCHIMAG = F perturbation theory with respect to B field DQ = 0.001000 dq finite difference perturbation B field LLRAUG = F two centre corrections for induced B field -------------------------------------------------------------------------------------------------------- Static calculation charge density and potential will be updated during run spin polarized calculation Conjugate gradient for all bands (Freysoldt, et al. PRB 79, 241103 (2009)) preconditioned conjugated gradient perform sub-space diagonalisation before iterative eigenvector-optimisation modified Broyden-mixing scheme, WC = 100.0 initial mixing is a Kerker type mixing with AMIX = 0.4000 and BMIX = 1.0000 Hartree-type preconditioning will be used using additional bands 80 reciprocal scheme for non local part use partial core corrections no Harris-corrections to forces use gradient corrections use of overlap-Matrix (Vanderbilt PP) Gauss-broadening in eV SIGMA = 0.05 -------------------------------------------------------------------------------------------------------- energy-cutoff : 520.00 volume of cell : 508.23 direct lattice vectors reciprocal lattice vectors 5.516165250 0.000000000 0.000000000 0.181285359 0.000000000 0.000000000 0.000000000 5.520658680 0.000000000 0.000000000 0.181137806 0.000000000 0.000000000 0.000000000 16.689093500 0.000000000 0.000000000 0.059919372 length of vectors 5.516165250 5.520658680 16.689093500 0.181285359 0.181137806 0.059919372 old parameters found on file WAVECAR: energy-cutoff : 520.00 volume of cell : 508.23 direct lattice vectors reciprocal lattice vectors 5.516165250 0.000000000 0.000000000 0.181285359 0.000000000 0.000000000 0.000000000 5.520658680 0.000000000 0.000000000 0.181137806 0.000000000 0.000000000 0.000000000 16.689093500 0.000000000 0.000000000 0.059919372 length of vectors k-points in units of 2pi/SCALE and weight: Automatic mesh 0.00000000 0.00000000 0.00000000 0.013 0.03625707 0.00000000 0.00000000 0.027 0.07251414 0.00000000 0.00000000 0.027 0.00000000 0.03622756 0.00000000 0.027 0.03625707 0.03622756 0.00000000 0.053 0.07251414 0.03622756 0.00000000 0.053 0.00000000 0.07245512 0.00000000 0.027 0.03625707 0.07245512 0.00000000 0.053 0.07251414 0.07245512 0.00000000 0.053 0.00000000 0.00000000 0.01997312 0.027 0.03625707 0.00000000 0.01997312 0.053 0.07251414 0.00000000 0.01997312 0.053 0.00000000 0.03622756 0.01997312 0.053 0.03625707 0.03622756 0.01997312 0.107 0.07251414 0.03622756 0.01997312 0.107 0.00000000 0.07245512 0.01997312 0.053 0.03625707 0.07245512 0.01997312 0.107 0.07251414 0.07245512 0.01997312 0.107 k-points in reciprocal lattice and weights: Automatic mesh 0.00000000 0.00000000 0.00000000 0.013 0.20000000 0.00000000 0.00000000 0.027 0.40000000 0.00000000 0.00000000 0.027 0.00000000 0.20000000 0.00000000 0.027 0.20000000 0.20000000 0.00000000 0.053 0.40000000 0.20000000 0.00000000 0.053 0.00000000 0.40000000 0.00000000 0.027 0.20000000 0.40000000 0.00000000 0.053 0.40000000 0.40000000 0.00000000 0.053 0.00000000 0.00000000 0.33333333 0.027 0.20000000 0.00000000 0.33333333 0.053 0.40000000 0.00000000 0.33333333 0.053 0.00000000 0.20000000 0.33333333 0.053 0.20000000 0.20000000 0.33333333 0.107 0.40000000 0.20000000 0.33333333 0.107 0.00000000 0.40000000 0.33333333 0.053 0.20000000 0.40000000 0.33333333 0.107 0.40000000 0.40000000 0.33333333 0.107 position of ions in fractional coordinates (direct lattice) 0.02421955 0.01571353 0.07637496 0.97578045 0.51571353 0.92362504 0.47578045 0.51571353 0.07637496 0.52421955 0.01571353 0.92362504 0.97547160 0.02916148 0.42354869 0.02452840 0.52916148 0.57645131 0.52452840 0.52916148 0.42354869 0.47547160 0.02916148 0.57645131 0.49566784 0.99178006 0.24982232 0.50433216 0.49178006 0.75017768 0.00433216 0.49178006 0.24982232 0.99566784 0.99178006 0.75017768 0.91819907 0.42535573 0.35692415 0.08180093 0.92535573 0.64307585 0.58180093 0.92535573 0.35692415 0.41819907 0.42535573 0.64307585 0.27291264 0.67238895 0.27082566 0.72708736 0.17238895 0.72917434 0.22708736 0.17238895 0.27082566 0.77291264 0.67238895 0.72917434 0.78829765 0.73130895 0.22912121 0.21170235 0.23130895 0.77087879 0.71170235 0.23130895 0.22912121 0.28829765 0.73130895 0.77087879 0.92421944 0.91088329 0.85760333 0.07578056 0.41088329 0.14239667 0.57578056 0.41088329 0.85760333 0.42421944 0.91088329 0.14239667 0.74102221 0.73897949 0.00205425 0.25897779 0.23897949 0.99794575 0.75897779 0.23897949 0.00205425 0.24102221 0.73897949 0.99794575 0.75915617 0.75292853 0.50197967 0.24084383 0.25292853 0.49802033 0.74084383 0.25292853 0.50197967 0.25915617 0.75292853 0.49802033 position of ions in cartesian coordinates (Angst): 0.13359904 0.08674904 1.27462885 5.38256621 2.84707838 15.41446465 2.62448358 2.84707838 1.27462885 2.89168167 0.08674904 15.41446465 5.38086254 0.16099058 7.06864369 0.13530271 2.92131992 9.62044981 2.89338533 2.92131992 7.06864369 2.62277992 0.16099058 9.62044981 2.73418571 5.47527920 4.16930806 2.78197954 2.71494986 12.51978544 0.02389691 2.71494986 4.16930806 5.49226834 5.47527920 12.51978544 5.06493780 2.34824380 5.95674051 0.45122745 5.10857314 10.73235299 3.20931007 5.10857314 5.95674051 2.30685518 2.34824380 10.73235299 1.50543122 3.71202989 4.51983476 4.01073403 0.95170055 12.16925874 1.25265140 0.95170055 4.51983476 4.26351385 3.71202989 12.16925874 4.34838010 4.03730710 3.82382530 1.16778515 1.27697776 12.86526820 3.92586777 1.27697776 3.82382530 1.59029748 4.03730710 12.86526820 5.09814716 5.02867574 14.31262216 0.41801809 2.26834640 2.37647134 3.17610072 2.26834640 14.31262216 2.34006453 5.02867574 2.37647134 4.08760096 4.07965354 0.03428357 1.42856429 1.31932420 16.65480993 4.18664691 1.31932420 0.03428357 1.32951834 4.07965354 16.65480993 4.18763088 4.15666142 8.37758565 1.32853437 1.39633208 8.31150785 4.08661699 1.39633208 8.37758565 1.42954826 4.15666142 8.31150785 -------------------------------------------------------------------------------------------------------- k-point 1 : 0.0000 0.0000 0.0000 plane waves: 13703 k-point 2 : 0.2000 0.0000 0.0000 plane waves: 13697 k-point 3 : 0.4000 0.0000 0.0000 plane waves: 13674 k-point 4 : 0.0000 0.2000 0.0000 plane waves: 13701 k-point 5 : 0.2000 0.2000 0.0000 plane waves: 13687 k-point 6 : 0.4000 0.2000 0.0000 plane waves: 13669 k-point 7 : 0.0000 0.4000 0.0000 plane waves: 13668 k-point 8 : 0.2000 0.4000 0.0000 plane waves: 13665 k-point 9 : 0.4000 0.4000 0.0000 plane waves: 13672 k-point 10 : 0.0000 0.0000 0.3333 plane waves: 13686 k-point 11 : 0.2000 0.0000 0.3333 plane waves: 13703 k-point 12 : 0.4000 0.0000 0.3333 plane waves: 13676 k-point 13 : 0.0000 0.2000 0.3333 plane waves: 13716 k-point 14 : 0.2000 0.2000 0.3333 plane waves: 13674 k-point 15 : 0.4000 0.2000 0.3333 plane waves: 13683 k-point 16 : 0.0000 0.4000 0.3333 plane waves: 13672 k-point 17 : 0.2000 0.4000 0.3333 plane waves: 13685 k-point 18 : 0.4000 0.4000 0.3333 plane waves: 13707 maximum and minimum number of plane-waves per node : 13716 13665 maximum number of plane-waves: 13716 maximum index in each direction: IXMAX= 10 IYMAX= 10 IZMAX= 31 IXMIN= -10 IYMIN= -10 IZMIN= -31 The following grids will avoid any aliasing or wrap around errors in the Hartre e energy - symmetry arguments have not been applied - exchange correlation energies might require even more grid points - we recommend to set PREC=Normal or Accurate and rely on VASP defaults WARNING: aliasing errors must be expected set NGX to 42 to avoid them WARNING: aliasing errors must be expected set NGY to 42 to avoid them WARNING: aliasing errors must be expected set NGZ to 126 to avoid them serial 3D FFT for wavefunctions parallel 3D FFT for charge: minimum data exchange during FFTs selected (reduces bandwidth) Radii for the augmentation spheres in the non-local exchange for species 1 augmentation radius 1.357 (default was 1.086) energy cutoff for augmentation 2080.0 for species 2 augmentation radius 1.478 (default was 1.182) energy cutoff for augmentation 2080.0 for species 3 augmentation radius 0.902 (default was 0.722) energy cutoff for augmentation 2080.0 Maximum index for augmentation-charges in exchange 2621 SETUP_FOCK is finished total amount of memory used by VASP MPI-rank0 290168. kBytes ======================================================================= base : 30000. kBytes nonl-proj : 114656. kBytes fftplans : 3114. kBytes grid : 10078. kBytes one-center: 1119. kBytes HF : 194. kBytes nonlr-proj: 8667. kBytes wavefun : 122340. kBytes INWAV: cpu time 9.1077: real time 9.5547 Broyden mixing: mesh for mixing (old mesh) NGX = 21 NGY = 21 NGZ = 63 (NGX = 64 NGY = 64 NGZ =192) gives a total of 27783 points charge density for first step will be calculated from the start-wavefunctions -------------------------------------------------------------------------------------------------------- Maximum index for augmentation-charges 2345 (set IRDMAX) -------------------------------------------------------------------------------------------------------- initial charge from wavefunction First call to EWALD: gamma= 0.222 Maximum number of real-space cells 4x 4x 2 Maximum number of reciprocal cells 2x 2x 5 FEWALD: cpu time 0.0028: real time 0.0028 --------------------------------------- Iteration 1( 1) --------------------------------------- POTLOK: cpu time 0.2523: real time 0.2541 SETDIJ: cpu time 0.3815: real time 0.3815 TRIAL : cpu time65215.5472: real time65272.6280