vasp.5.4.4.18Apr17-6-g9f103f2a35 (build May 12 2020 04:58:55) complex          
  
 MD_VERSION_INFO: Compiled 2020-05-12T11:58:55-UTC in devlin.sd.materialsdesign.
 com:/home/medea2/data/build/wwolf/vasp-gpu5.4.4/13047/x86_64/src/src/build/std 
 from svn 13047
 
 This VASP executable licensed from Materials Design, Inc.
 
 executed on                        Lin64 date 2024.10.03  12:11:50
 running on   48 total cores
 distrk:  each k-point on   48 cores,    1 groups
 distr:  one band on NCORES_PER_BAND=   1 cores,   48 groups


--------------------------------------------------------------------------------------------------------


 INCAR:
 POTCAR:    PAW_PBE Bi_d 06Sep2000                
 POTCAR:    PAW_PBE W_sv 04Sep2015                
 POTCAR:    PAW_PBE O 08Apr2002                   

 ----------------------------------------------------------------------------- 
|                                                                             |
|           W    W    AA    RRRRR   N    N  II  N    N   GGGG   !!!           |
|           W    W   A  A   R    R  NN   N  II  NN   N  G    G  !!!           |
|           W    W  A    A  R    R  N N  N  II  N N  N  G       !!!           |
|           W WW W  AAAAAA  RRRRR   N  N N  II  N  N N  G  GGG   !            |
|           WW  WW  A    A  R   R   N   NN  II  N   NN  G    G                |
|           W    W  A    A  R    R  N    N  II  N    N   GGGG   !!!           |
|                                                                             |
|      For optimal performance we recommend to set                            |
|        NCORE= 4 - approx SQRT( number of cores)                             |
|      NCORE specifies how many cores store one orbital (NPAR=cpu/NCORE).     |
|      This setting can  greatly improve the performance of VASP for DFT.     |
|      The default,   NCORE=1            might be grossly inefficient         |
|      on modern multi-core architectures or massively parallel machines.     |
|      Do your own testing !!!!                                               |
|      Unfortunately you need to use the default for GW and RPA calculations. |
|      (for HF NCORE is supported but not extensively tested yet)             |
|                                                                             |
 ----------------------------------------------------------------------------- 

 POTCAR:    PAW_PBE Bi_d 06Sep2000                
  local pseudopotential read in
  partial core-charges read in
  partial kinetic energy density read in
  atomic valenz-charges read in
  non local Contribution for L=           2  read in
    real space projection operators read in
  non local Contribution for L=           2  read in
    real space projection operators read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
    PAW grid and wavefunctions read in
 
   number of l-projection  operators is LMAX  =           6
   number of lm-projection operators is LMMAX =          18
 
 POTCAR:    PAW_PBE W_sv 04Sep2015                
  local pseudopotential read in
  partial core-charges read in
  partial kinetic energy density read in
  kinetic energy density of atom read in
  atomic valenz-charges read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
  non local Contribution for L=           2  read in
    real space projection operators read in
  non local Contribution for L=           2  read in
    real space projection operators read in
    PAW grid and wavefunctions read in
 
   number of l-projection  operators is LMAX  =           6
   number of lm-projection operators is LMMAX =          18
 
 POTCAR:    PAW_PBE O 08Apr2002                   
  local pseudopotential read in
  partial core-charges read in
  partial kinetic energy density read in
  kinetic energy density of atom read in
  atomic valenz-charges read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
    PAW grid and wavefunctions read in
 
   number of l-projection  operators is LMAX  =           4
   number of lm-projection operators is LMMAX =           8
 

 ----------------------------------------------------------------------------- 
|                                                                             |
|  ADVICE TO THIS USER RUNNING 'VASP/VAMP'   (HEAR YOUR MASTER'S VOICE ...):  |
|                                                                             |
|      You have a (more or less) 'large supercell' and for larger cells       |
|      it might be more efficient to use real space projection opertators     |
|      So try LREAL= Auto  in the INCAR   file.                               |
|      Mind:          For very  accurate calculation you might also keep the  |
|      reciprocal projection scheme          (i.e. LREAL=.FALSE.)             |
|                                                                             |
 ----------------------------------------------------------------------------- 

  PAW_PBE Bi_d 06Sep2000                :
 energy of atom  1       EATOM=-1959.2045
 kinetic energy error for atom=    0.0040 (will be added to EATOM!!)
  PAW_PBE W_sv 04Sep2015                :
 energy of atom  2       EATOM=-1865.5791
 kinetic energy error for atom=    0.0026 (will be added to EATOM!!)
  PAW_PBE O 08Apr2002                   :
 energy of atom  3       EATOM= -432.3788
 kinetic energy error for atom=    0.0208 (will be added to EATOM!!)
 
 
 POSCAR: Bi2WO6_hbb                              
  positions in direct lattice
  No initial velocities read in
 exchange correlation table for  LEXCH =        8
   RHO(1)=    0.500       N(1)  =     2000
   RHO(2)=  100.500       N(2)  =     4000
 


--------------------------------------------------------------------------------------------------------


 ion  position               nearest neighbor table
   1  0.024  0.016  0.076-  30 2.22  31 2.28  32 2.34  26 2.46  29 2.51  28 2.53   3 3.72   3 3.72
                             4 3.76   4 3.76   2 3.77   2 3.77
   2  0.976  0.516  0.924-  29 2.22  32 2.28  31 2.34  25 2.46  30 2.51  27 2.53   4 3.72   4 3.72
                             3 3.76   3 3.76   1 3.77   1 3.77
   3  0.476  0.516  0.076-  32 2.22  29 2.28  30 2.34  28 2.46  31 2.51  26 2.53   1 3.72   1 3.72
                             2 3.76   2 3.76   4 3.77   4 3.77
   4  0.524  0.016  0.924-  31 2.22  30 2.28  29 2.34  27 2.46  32 2.51  25 2.53   2 3.72   2 3.72
                             1 3.76   1 3.76   3 3.77   3 3.77
   5  0.975  0.029  0.424-  35 2.22  34 2.28  33 2.34  13 2.47  15 2.51  36 2.51   7 3.72   7 3.72
                             8 3.76   8 3.76   6 3.77   6 3.77
   6  0.025  0.529  0.576-  36 2.22  33 2.28  34 2.34  14 2.47  16 2.51  35 2.51   8 3.72   8 3.72
                             7 3.76   7 3.76   5 3.77   5 3.77
   7  0.525  0.529  0.424-  33 2.22  36 2.28  35 2.34  15 2.47  13 2.51  34 2.51   5 3.72   5 3.72
                             6 3.76   6 3.76   8 3.77   8 3.77
   8  0.475  0.029  0.576-  34 2.22  35 2.28  36 2.34  16 2.47  14 2.51  33 2.51   6 3.72   6 3.72
                             5 3.76   5 3.76   7 3.77   7 3.77
   9  0.496  0.992  0.250-  23 1.81  19 1.82  15 1.89  28 1.89  17 2.18  21 2.19
  10  0.504  0.492  0.750-  24 1.81  20 1.82  16 1.89  27 1.89  18 2.18  22 2.19
  11  0.004  0.492  0.250-  21 1.81  17 1.82  13 1.89  26 1.89  19 2.18  23 2.19
  12  0.996  0.992  0.750-  22 1.81  18 1.82  14 1.89  25 1.89  20 2.18  24 2.19
  13  0.918  0.425  0.357-  11 1.89   5 2.47   7 2.51
  14  0.082  0.925  0.643-  12 1.89   6 2.47   8 2.51
  15  0.582  0.925  0.357-   9 1.89   7 2.47   5 2.51
  16  0.418  0.425  0.643-  10 1.89   8 2.47   6 2.51
  17  0.273  0.672  0.271-  11 1.82   9 2.18
  18  0.727  0.172  0.729-  12 1.82  10 2.18
  19  0.227  0.172  0.271-   9 1.82  11 2.18
  20  0.773  0.672  0.729-  10 1.82  12 2.18
  21  0.788  0.731  0.229-  11 1.81   9 2.19
  22  0.212  0.231  0.771-  12 1.81  10 2.19
  23  0.712  0.231  0.229-   9 1.81  11 2.19
  24  0.288  0.731  0.771-  10 1.81  12 2.19
  25  0.924  0.911  0.858-  12 1.89   2 2.46   4 2.53
  26  0.076  0.411  0.142-  11 1.89   1 2.46   3 2.53
  27  0.576  0.411  0.858-  10 1.89   4 2.46   2 2.53
  28  0.424  0.911  0.142-   9 1.89   3 2.46   1 2.53
  29  0.741  0.739  0.002-   2 2.22   3 2.28   4 2.34   1 2.51
  30  0.259  0.239  0.998-   1 2.22   4 2.28   3 2.34   2 2.51
  31  0.759  0.239  0.002-   4 2.22   1 2.28   2 2.34   3 2.51
  32  0.241  0.739  0.998-   3 2.22   2 2.28   1 2.34   4 2.51
  33  0.759  0.753  0.502-   7 2.22   6 2.28   5 2.34   8 2.51
  34  0.241  0.253  0.498-   8 2.22   5 2.28   6 2.34   7 2.51
  35  0.741  0.253  0.502-   5 2.22   8 2.28   7 2.34   6 2.51
  36  0.259  0.753  0.498-   6 2.22   7 2.28   8 2.34   5 2.51
 
  LATTYP: Found a simple orthorhombic cell.
 ALAT       =     5.5161652500
 B/A-ratio  =     1.0008145931
 C/A-ratio  =     3.0254883136
  
  Lattice vectors:
  
 A1 = (   5.5161652500,   0.0000000000,   0.0000000000)
 A2 = (   0.0000000000,   5.5206586800,   0.0000000000)
 A3 = (   0.0000000000,   0.0000000000,  16.6890935000)


Analysis of symmetry for initial positions (statically):
=====================================================================
 Subroutine PRICEL returns:
 Original cell was already a primitive cell.
 

 Routine SETGRP: Setting up the symmetry group for a 
 simple orthorhombic supercell.


 Subroutine GETGRP returns: Found  4 space group operations
 (whereof  1 operations were pure point group operations)
 out of a pool of  8 trial point group operations.


The static configuration has the point symmetry C_1 .
 The point group associated with its full space group is C_2v.


Analysis of symmetry for dynamics (positions and initial velocities):
=====================================================================
 Subroutine PRICEL returns:
 Original cell was already a primitive cell.
 

 Routine SETGRP: Setting up the symmetry group for a 
 simple orthorhombic supercell.


 Subroutine GETGRP returns: Found  4 space group operations
 (whereof  1 operations were pure point group operations)
 out of a pool of  8 trial point group operations.


The dynamic configuration has the point symmetry C_1 .
 The point group associated with its full space group is C_2v.


Analysis of structural, dynamic, and magnetic symmetry:
=====================================================================
 Subroutine PRICEL returns:
 Original cell was already a primitive cell.
 

 Routine SETGRP: Setting up the symmetry group for a 
 simple orthorhombic supercell.


 Subroutine GETGRP returns: Found  4 space group operations
 (whereof  1 operations were pure point group operations)
 out of a pool of  8 trial point group operations.


The magnetic configuration has the point symmetry C_1 .
 The point group associated with its full space group is C_2v.


 Subroutine INISYM returns: Found  4 space group operations
 (whereof  1 operations are pure point group operations),
 and found     1 'primitive' translations

 
 
 KPOINTS: Automatic mesh                          

Automatic generation of k-mesh.
Space group operators:
 irot       det(A)        alpha          n_x          n_y          n_z        tau_x        tau_y        tau_z
    1     1.000000     0.000000     1.000000     0.000000     0.000000     0.000000     0.000000     0.000000
    2    -1.000000   180.000000     0.000000     0.000000     1.000000     0.500000     0.000000     0.000000
    3     1.000000   180.000000     0.000000     1.000000     0.000000     0.000000     0.500000     0.000000
    4    -1.000000   180.000000     1.000000     0.000000     0.000000     0.500000     0.500000     0.000000
 
 Subroutine IBZKPT returns following result:
 ===========================================
 
 Found     18 irreducible k-points:
 
 Following reciprocal coordinates:
            Coordinates               Weight
  0.000000  0.000000  0.000000      1.000000
  0.200000  0.000000  0.000000      2.000000
  0.400000  0.000000  0.000000      2.000000
  0.000000  0.200000  0.000000      2.000000
  0.200000  0.200000  0.000000      4.000000
  0.400000  0.200000  0.000000      4.000000
  0.000000  0.400000  0.000000      2.000000
  0.200000  0.400000  0.000000      4.000000
  0.400000  0.400000  0.000000      4.000000
  0.000000  0.000000  0.333333      2.000000
  0.200000  0.000000  0.333333      4.000000
  0.400000  0.000000  0.333333      4.000000
  0.000000  0.200000  0.333333      4.000000
  0.200000  0.200000  0.333333      8.000000
  0.400000  0.200000  0.333333      8.000000
  0.000000  0.400000  0.333333      4.000000
  0.200000  0.400000  0.333333      8.000000
  0.400000  0.400000  0.333333      8.000000
 
 Following cartesian coordinates:
            Coordinates               Weight
  0.000000  0.000000  0.000000      1.000000
  0.036257  0.000000  0.000000      2.000000
  0.072514  0.000000  0.000000      2.000000
  0.000000  0.036228  0.000000      2.000000
  0.036257  0.036228  0.000000      4.000000
  0.072514  0.036228  0.000000      4.000000
  0.000000  0.072455  0.000000      2.000000
  0.036257  0.072455  0.000000      4.000000
  0.072514  0.072455  0.000000      4.000000
  0.000000  0.000000  0.019973      2.000000
  0.036257  0.000000  0.019973      4.000000
  0.072514  0.000000  0.019973      4.000000
  0.000000  0.036228  0.019973      4.000000
  0.036257  0.036228  0.019973      8.000000
  0.072514  0.036228  0.019973      8.000000
  0.000000  0.072455  0.019973      4.000000
  0.036257  0.072455  0.019973      8.000000
  0.072514  0.072455  0.019973      8.000000
 
 
 Subroutine IBZKPT_HF returns following result:
 ==============================================
 
 Found     75 k-points in 1st BZ
 the following     75 k-points will be used (e.g. in the exchange kernel)
 Following reciprocal coordinates:   # in IRBZ
  0.000000  0.000000  0.000000    0.01333333   1 t-inv F
  0.200000  0.000000  0.000000    0.01333333   2 t-inv F
  0.400000  0.000000  0.000000    0.01333333   3 t-inv F
  0.000000  0.200000  0.000000    0.01333333   4 t-inv F
  0.200000  0.200000  0.000000    0.01333333   5 t-inv F
  0.400000  0.200000  0.000000    0.01333333   6 t-inv F
  0.000000  0.400000  0.000000    0.01333333   7 t-inv F
  0.200000  0.400000  0.000000    0.01333333   8 t-inv F
  0.400000  0.400000  0.000000    0.01333333   9 t-inv F
  0.000000  0.000000  0.333333    0.01333333  10 t-inv F
  0.200000  0.000000  0.333333    0.01333333  11 t-inv F
  0.400000  0.000000  0.333333    0.01333333  12 t-inv F
  0.000000  0.200000  0.333333    0.01333333  13 t-inv F
  0.200000  0.200000  0.333333    0.01333333  14 t-inv F
  0.400000  0.200000  0.333333    0.01333333  15 t-inv F
  0.000000  0.400000  0.333333    0.01333333  16 t-inv F
  0.200000  0.400000  0.333333    0.01333333  17 t-inv F
  0.400000  0.400000  0.333333    0.01333333  18 t-inv F
 -0.200000  0.000000  0.000000    0.01333333   2 t-inv F
 -0.400000  0.000000  0.000000    0.01333333   3 t-inv F
 -0.200000  0.200000  0.000000    0.01333333   5 t-inv F
 -0.400000  0.200000  0.000000    0.01333333   6 t-inv F
 -0.200000  0.400000  0.000000    0.01333333   8 t-inv F
 -0.400000  0.400000  0.000000    0.01333333   9 t-inv F
  0.000000  0.000000 -0.333333    0.01333333  10 t-inv F
  0.200000  0.000000 -0.333333    0.01333333  11 t-inv F
 -0.200000  0.000000 -0.333333    0.01333333  11 t-inv F
 -0.200000  0.000000  0.333333    0.01333333  11 t-inv F
  0.400000  0.000000 -0.333333    0.01333333  12 t-inv F
 -0.400000  0.000000 -0.333333    0.01333333  12 t-inv F
 -0.400000  0.000000  0.333333    0.01333333  12 t-inv F
  0.000000  0.200000 -0.333333    0.01333333  13 t-inv F
  0.200000  0.200000 -0.333333    0.01333333  14 t-inv F
 -0.200000  0.200000 -0.333333    0.01333333  14 t-inv F
 -0.200000  0.200000  0.333333    0.01333333  14 t-inv F
  0.400000  0.200000 -0.333333    0.01333333  15 t-inv F
 -0.400000  0.200000 -0.333333    0.01333333  15 t-inv F
 -0.400000  0.200000  0.333333    0.01333333  15 t-inv F
  0.000000  0.400000 -0.333333    0.01333333  16 t-inv F
  0.200000  0.400000 -0.333333    0.01333333  17 t-inv F
 -0.200000  0.400000 -0.333333    0.01333333  17 t-inv F
 -0.200000  0.400000  0.333333    0.01333333  17 t-inv F
  0.400000  0.400000 -0.333333    0.01333333  18 t-inv F
 -0.400000  0.400000 -0.333333    0.01333333  18 t-inv F
 -0.400000  0.400000  0.333333    0.01333333  18 t-inv F
  0.000000 -0.200000  0.000000    0.01333333   4 t-inv T
 -0.200000 -0.200000  0.000000    0.01333333   5 t-inv T
  0.200000 -0.200000  0.000000    0.01333333   5 t-inv T
 -0.400000 -0.200000  0.000000    0.01333333   6 t-inv T
  0.400000 -0.200000  0.000000    0.01333333   6 t-inv T
  0.000000 -0.400000  0.000000    0.01333333   7 t-inv T
 -0.200000 -0.400000  0.000000    0.01333333   8 t-inv T
  0.200000 -0.400000  0.000000    0.01333333   8 t-inv T
 -0.400000 -0.400000  0.000000    0.01333333   9 t-inv T
  0.400000 -0.400000  0.000000    0.01333333   9 t-inv T
  0.000000 -0.200000 -0.333333    0.01333333  13 t-inv T
  0.000000 -0.200000  0.333333    0.01333333  13 t-inv T
 -0.200000 -0.200000 -0.333333    0.01333333  14 t-inv T
 -0.200000 -0.200000  0.333333    0.01333333  14 t-inv T
  0.200000 -0.200000  0.333333    0.01333333  14 t-inv T
  0.200000 -0.200000 -0.333333    0.01333333  14 t-inv T
 -0.400000 -0.200000 -0.333333    0.01333333  15 t-inv T
 -0.400000 -0.200000  0.333333    0.01333333  15 t-inv T
  0.400000 -0.200000  0.333333    0.01333333  15 t-inv T
  0.400000 -0.200000 -0.333333    0.01333333  15 t-inv T
  0.000000 -0.400000 -0.333333    0.01333333  16 t-inv T
  0.000000 -0.400000  0.333333    0.01333333  16 t-inv T
 -0.200000 -0.400000 -0.333333    0.01333333  17 t-inv T
 -0.200000 -0.400000  0.333333    0.01333333  17 t-inv T
  0.200000 -0.400000  0.333333    0.01333333  17 t-inv T
  0.200000 -0.400000 -0.333333    0.01333333  17 t-inv T
 -0.400000 -0.400000 -0.333333    0.01333333  18 t-inv T
 -0.400000 -0.400000  0.333333    0.01333333  18 t-inv T
  0.400000 -0.400000  0.333333    0.01333333  18 t-inv T
  0.400000 -0.400000 -0.333333    0.01333333  18 t-inv T

 ----------------------------------------------------------------------------- 
|                                                                             |
|           W    W    AA    RRRRR   N    N  II  N    N   GGGG   !!!           |
|           W    W   A  A   R    R  NN   N  II  NN   N  G    G  !!!           |
|           W    W  A    A  R    R  N N  N  II  N N  N  G       !!!           |
|           W WW W  AAAAAA  RRRRR   N  N N  II  N  N N  G  GGG   !            |
|           WW  WW  A    A  R   R   N   NN  II  N   NN  G    G                |
|           W    W  A    A  R    R  N    N  II  N    N   GGGG   !!!           |
|                                                                             |
|      The number of bands has been changed from the values supplied          |
|      in the INCAR file. This is a result of running the parallel version.   |
|      The orbitals not found in the WAVECAR file will be initialized with    |
|      random numbers, which is usually adequate. For correlated              |
|      calculations, however, you should redo the groundstate calculation.    |
|      I found NBANDS    =      200  now  NBANDS  =     240                   |
|                                                                             |
 ----------------------------------------------------------------------------- 



--------------------------------------------------------------------------------------------------------




 Dimension of arrays:
   k-points           NKPTS =     18   k-points in BZ     NKDIM =     75   number of bands    NBANDS=    240
   number of dos      NEDOS =    301   number of ions     NIONS =     36
   non local maximal  LDIM  =      6   non local SUM 2l+1 LMDIM =     18
   total plane-waves  NPLWV =  98304
   max r-space proj   IRMAX =      1   max aug-charges    IRDMAX=  88516
   dimension x,y,z NGX =    32 NGY =   32 NGZ =   96
   dimension x,y,z NGXF=    64 NGYF=   64 NGZF=  192
   support grid    NGXF=   128 NGYF=  128 NGZF=  384
   ions per type =               8   4  24
   NGX,Y,Z   is equivalent  to a cutoff of   9.64,  9.64,  9.56 a.u.
   NGXF,Y,Z  is equivalent  to a cutoff of  19.29, 19.27, 19.13 a.u.

 SYSTEM =  Bi2WO6_hbb                              
 POSCAR =  Bi2WO6_hbb                              

 Startparameter for this run:
   NWRITE =      1    write-flag & timer
   PREC   = normal    normal or accurate (medium, high low for compatibility)
   ISTART =      1    job   : 0-new  1-cont  2-samecut
   ICHARG =      0    charge: 1-file 2-atom 10-const
   ISPIN  =      2    spin polarized calculation?
   LNONCOLLINEAR =      F non collinear calculations
   LSORBIT =      F    spin-orbit coupling
   INIWAV =      1    electr: 0-lowe 1-rand  2-diag
   LASPH  =      F    aspherical Exc in radial PAW
   METAGGA=      F    non-selfconsistent MetaGGA calc.

 Electronic Relaxation 1
   ENCUT  =  520.0 eV  38.22 Ry    6.18 a.u.  10.26 10.26 31.03*2*pi/ulx,y,z
   ENINI  =  520.0     initial cutoff
   ENAUG  =  605.4 eV  augmentation charge cutoff
   NELM   =     60;   NELMIN=  2; NELMDL=  0     # of ELM steps 
   EDIFF  = 0.1E-04   stopping-criterion for ELM
   LREAL  =      F    real-space projection
   NLSPLINE    = F    spline interpolate recip. space projectors
   LCOMPAT=      F    compatible to vasp.4.4
   GGA_COMPAT  = T    GGA compatible to vasp.4.4-vasp.4.6
   LMAXPAW     = -100 max onsite density
   LMAXMIX     =    2 max onsite mixed and CHGCAR
   VOSKOWN=      1    Vosko Wilk Nusair interpolation
   ROPT   =    0.00000   0.00000   0.00000
 Ionic relaxation
   EDIFFG = -.2E-01   stopping-criterion for IOM
   NSW    =      0    number of steps for IOM
   NBLOCK =      1;   KBLOCK =      1    inner block; outer block 
   IBRION =     -1    ionic relax: 0-MD 1-quasi-New 2-CG
   NFREE  =      0    steps in history (QN), initial steepest desc. (CG)
   ISIF   =      2    stress and relaxation
   IWAVPR =     10    prediction:  0-non 1-charg 2-wave 3-comb
   ISYM   =      3    0-nonsym 1-usesym 2-fastsym
   LCORR  =      T    Harris-Foulkes like correction to forces

   POTIM  = 0.5000    time-step for ionic-motion
   TEIN   =    0.0    initial temperature
   TEBEG  =    0.0;   TEEND  =   0.0 temperature during run
   SMASS  =  -3.00    Nose mass-parameter (am)
   estimated Nose-frequenzy (Omega)   =  0.10E-29 period in steps =****** mass=  -0.695E-27a.u.
   SCALEE = 1.0000    scale energy and forces
   NPACO  =    256;   APACO  = 16.0  distance and # of slots for P.C.
   PSTRESS=    0.0 pullay stress

  Mass of Ions in am
   POMASS = 208.98183.85 16.00
  Ionic Valenz
   ZVAL   =  15.00 14.00  6.00
  Atomic Wigner-Seitz radii
   RWIGS  =   1.46  1.30  0.73
  virtual crystal weights 
   VCA    =   1.00  1.00  1.00
   NELECT =     320.0000    total number of electrons
   NUPDOWN=      -1.0000    fix difference up-down

 DOS related values:
   EMIN   =  10.00;   EMAX   =-10.00  energy-range for DOS
   EFERMI =   0.00
   ISMEAR =     0;   SIGMA  =   0.05  broadening in eV -4-tet -1-fermi 0-gaus

 Electronic relaxation 2 (details)
   IALGO  =     58    algorithm
   LDIAG  =      T    sub-space diagonalisation (order eigenvalues)
   LSUBROT=      F    optimize rotation matrix (better conditioning)
   TURBO    =      0    0=normal 1=particle mesh
   IRESTART =      0    0=no restart 2=restart with 2 vectors
   NREBOOT  =      0    no. of reboots
   NMIN     =      0    reboot dimension
   EREF     =   0.00    reference energy to select bands
   IMIX   =      4    mixing-type and parameters
     AMIX     =   0.40;   BMIX     =  1.00
     AMIX_MAG =   1.60;   BMIX_MAG =  1.00
     AMIN     =   0.10
     WC   =   100.;   INIMIX=   1;  MIXPRE=   1;  MAXMIX= -45

 Intra band minimization:
   WEIMIN = 0.0000     energy-eigenvalue tresh-hold
   EBREAK =  0.10E-07  absolut break condition
   DEPER  =   0.30     relativ break condition  

   TIME   =   0.40     timestep for ELM

  volume/ion in A,a.u.               =      14.12        95.27
  Fermi-wavevector in a.u.,A,eV,Ry     =   1.403151  2.651572 26.787609  1.968834
  Thomas-Fermi vector in A             =   2.525842
 
 Write flags
   LWAVE        =      T    write WAVECAR
   LDOWNSAMPLE  =      F    k-point downsampling of WAVECAR
   LCHARG       =      T    write CHGCAR
   LVTOT        =      F    write LOCPOT, total local potential
   LVHAR        =      F    write LOCPOT, Hartree potential only
   LELF         =      F    write electronic localiz. function (ELF)
   LORBIT       =      0    0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes


 Dipole corrections
   LMONO  =      F    monopole corrections only (constant potential shift)
   LDIPOL =      F    correct potential (dipole corrections)
   IDIPOL =      0    1-x, 2-y, 3-z, 4-all directions 
   EPSILON=  1.0000000 bulk dielectric constant

 Exchange correlation treatment:
   GGA     =    --    GGA type
   LEXCH   =     8    internal setting for exchange type
   VOSKOWN=      1    Vosko Wilk Nusair interpolation
   EXXOEP  =     0    0=HF, 1=EXX-LHF (local Hartree Fock) 2=EXX OEP
   LHFCALC =     T    Hartree Fock is set to
   LSYMGRAD=     F    symmetrize gradient (conserves proper symmetry)
   PRECFOCK=normal    Normal, Fast or Accurate (Low or Medium for compatibility)
   LRHFCALC=     F    long range Hartree Fock
   LRSCOR  =     F    long range correlation only (use DFT for short range part)
   LTHOMAS =     F    Thomas Fermi screening in HF
   LMODELHF=     F    short range full HF, long range fraction AEXX
   ENCUT4O =  -1.0   cutoff for four orbital integrals eV
   LMAXFOCK=     4    L truncation for augmentation on plane wave grid
   LMAXFOCKAE=  -1    L truncation for all-electron charge restoration on plane wave grid
   NMAXFOCKAE=   1    number of basis functions for all-electron charge restoration
   LFOCKAEDFT=     F  apply the AE augmentation even for DFT
   NKREDX  =     1    reduce k-point grid by
   NKREDY  =     1    reduce k-point grid by
   NKREDZ  =     1    reduce k-point grid by
   SHIFTRED=     F    shift reduced grid of Gamma
   HFKIDENT=     F    idential grid for each k-point
   ODDONLY =     F    use only odd q-grid points
   EVENONLY=     F    use only even q-grid points
   HFALPHA =   -1.0000 decay constant for conv. correction
   MCALPHA =    0.0000 extent of test-charge in conv. correction in multipole expansion
   AEXX    =    0.2500 exact exchange contribution
   HFSCREEN=    0.2000 screening length (either q_TF or 0.3 A-1)
   HFSCREENC=   0.2000 screening length for correlation (either q_TF or 0.3 A-1)
   HFRCUT  =    0.0000 spherical cutoff for potential kernel
   ALDAX   =    0.7500 LDA exchange part
   AGGAX   =    0.7500 GGA exchange part
   ALDAC   =    1.0000 LDA correlation
   AGGAC   =    1.0000 GGA correlation
   ENCUTFOCK=  -1.0 apply spherical cutoff to Coloumb kernel
   NBANDSGWLOW=     1    first orbital included in HF term
   NBLOCK_FOCK=    64    blocking factor in FOCK_ACC
 Linear response parameters
   LEPSILON=     F    determine dielectric tensor
   LRPA    =     F    only Hartree local field effects (RPA)
   LNABLA  =     F    use nabla operator in PAW spheres
   LVEL    =     F    velocity operator in full k-point grid
   LINTERFAST=   F  fast interpolation
   KINTER  =     0    interpolate to denser k-point grid
   CSHIFT  =0.1000    complex shift for real part using Kramers Kronig
   OMEGAMAX=  -1.0    maximum frequency
   DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate
   RTIME   =   -0.100 relaxation time in fs
  (WPLASMAI=    0.000 imaginary part of plasma frequency in eV, 0.658/RTIME)
   DFIELD  = 0.0000000 0.0000000 0.0000000 field for delta impulse in time
 
 Orbital magnetization related:
   ORBITALMAG=     F  switch on orbital magnetization
   LCHIMAG   =     F  perturbation theory with respect to B field
   DQ        =  0.001000  dq finite difference perturbation B field
   LLRAUG    =     F  two centre corrections for induced B field



--------------------------------------------------------------------------------------------------------


 Static calculation
 charge density and potential will be updated during run
 spin polarized calculation
 Conjugate gradient for all bands (Freysoldt, et al. PRB 79, 241103 (2009))
 preconditioned conjugated gradient                                        
 perform sub-space diagonalisation
    before iterative eigenvector-optimisation
 modified Broyden-mixing scheme, WC =      100.0
 initial mixing is a Kerker type mixing with AMIX =  0.4000 and BMIX =      1.0000
 Hartree-type preconditioning will be used
 using additional bands           80
 reciprocal scheme for non local part
 use partial core corrections
 no Harris-corrections to forces 
 use gradient corrections 
 use of overlap-Matrix (Vanderbilt PP)
 Gauss-broadening in eV      SIGMA  =   0.05


--------------------------------------------------------------------------------------------------------


  energy-cutoff  :      520.00
  volume of cell :      508.23
      direct lattice vectors                 reciprocal lattice vectors
     5.516165250  0.000000000  0.000000000     0.181285359  0.000000000  0.000000000
     0.000000000  5.520658680  0.000000000     0.000000000  0.181137806  0.000000000
     0.000000000  0.000000000 16.689093500     0.000000000  0.000000000  0.059919372

  length of vectors
     5.516165250  5.520658680 16.689093500     0.181285359  0.181137806  0.059919372


 
 old parameters found on file WAVECAR:
  energy-cutoff  :      520.00
  volume of cell :      508.23
      direct lattice vectors                 reciprocal lattice vectors
     5.516165250  0.000000000  0.000000000     0.181285359  0.000000000  0.000000000
     0.000000000  5.520658680  0.000000000     0.000000000  0.181137806  0.000000000
     0.000000000  0.000000000 16.689093500     0.000000000  0.000000000  0.059919372

  length of vectors

 
 k-points in units of 2pi/SCALE and weight: Automatic mesh                          
   0.00000000  0.00000000  0.00000000       0.013
   0.03625707  0.00000000  0.00000000       0.027
   0.07251414  0.00000000  0.00000000       0.027
   0.00000000  0.03622756  0.00000000       0.027
   0.03625707  0.03622756  0.00000000       0.053
   0.07251414  0.03622756  0.00000000       0.053
   0.00000000  0.07245512  0.00000000       0.027
   0.03625707  0.07245512  0.00000000       0.053
   0.07251414  0.07245512  0.00000000       0.053
   0.00000000  0.00000000  0.01997312       0.027
   0.03625707  0.00000000  0.01997312       0.053
   0.07251414  0.00000000  0.01997312       0.053
   0.00000000  0.03622756  0.01997312       0.053
   0.03625707  0.03622756  0.01997312       0.107
   0.07251414  0.03622756  0.01997312       0.107
   0.00000000  0.07245512  0.01997312       0.053
   0.03625707  0.07245512  0.01997312       0.107
   0.07251414  0.07245512  0.01997312       0.107
 
 k-points in reciprocal lattice and weights: Automatic mesh                          
   0.00000000  0.00000000  0.00000000       0.013
   0.20000000  0.00000000  0.00000000       0.027
   0.40000000  0.00000000  0.00000000       0.027
   0.00000000  0.20000000  0.00000000       0.027
   0.20000000  0.20000000  0.00000000       0.053
   0.40000000  0.20000000  0.00000000       0.053
   0.00000000  0.40000000  0.00000000       0.027
   0.20000000  0.40000000  0.00000000       0.053
   0.40000000  0.40000000  0.00000000       0.053
   0.00000000  0.00000000  0.33333333       0.027
   0.20000000  0.00000000  0.33333333       0.053
   0.40000000  0.00000000  0.33333333       0.053
   0.00000000  0.20000000  0.33333333       0.053
   0.20000000  0.20000000  0.33333333       0.107
   0.40000000  0.20000000  0.33333333       0.107
   0.00000000  0.40000000  0.33333333       0.053
   0.20000000  0.40000000  0.33333333       0.107
   0.40000000  0.40000000  0.33333333       0.107
 
 position of ions in fractional coordinates (direct lattice) 
   0.02421955  0.01571353  0.07637496
   0.97578045  0.51571353  0.92362504
   0.47578045  0.51571353  0.07637496
   0.52421955  0.01571353  0.92362504
   0.97547160  0.02916148  0.42354869
   0.02452840  0.52916148  0.57645131
   0.52452840  0.52916148  0.42354869
   0.47547160  0.02916148  0.57645131
   0.49566784  0.99178006  0.24982232
   0.50433216  0.49178006  0.75017768
   0.00433216  0.49178006  0.24982232
   0.99566784  0.99178006  0.75017768
   0.91819907  0.42535573  0.35692415
   0.08180093  0.92535573  0.64307585
   0.58180093  0.92535573  0.35692415
   0.41819907  0.42535573  0.64307585
   0.27291264  0.67238895  0.27082566
   0.72708736  0.17238895  0.72917434
   0.22708736  0.17238895  0.27082566
   0.77291264  0.67238895  0.72917434
   0.78829765  0.73130895  0.22912121
   0.21170235  0.23130895  0.77087879
   0.71170235  0.23130895  0.22912121
   0.28829765  0.73130895  0.77087879
   0.92421944  0.91088329  0.85760333
   0.07578056  0.41088329  0.14239667
   0.57578056  0.41088329  0.85760333
   0.42421944  0.91088329  0.14239667
   0.74102221  0.73897949  0.00205425
   0.25897779  0.23897949  0.99794575
   0.75897779  0.23897949  0.00205425
   0.24102221  0.73897949  0.99794575
   0.75915617  0.75292853  0.50197967
   0.24084383  0.25292853  0.49802033
   0.74084383  0.25292853  0.50197967
   0.25915617  0.75292853  0.49802033
 
 position of ions in cartesian coordinates  (Angst):
   0.13359904  0.08674904  1.27462885
   5.38256621  2.84707838 15.41446465
   2.62448358  2.84707838  1.27462885
   2.89168167  0.08674904 15.41446465
   5.38086254  0.16099058  7.06864369
   0.13530271  2.92131992  9.62044981
   2.89338533  2.92131992  7.06864369
   2.62277992  0.16099058  9.62044981
   2.73418571  5.47527920  4.16930806
   2.78197954  2.71494986 12.51978544
   0.02389691  2.71494986  4.16930806
   5.49226834  5.47527920 12.51978544
   5.06493780  2.34824380  5.95674051
   0.45122745  5.10857314 10.73235299
   3.20931007  5.10857314  5.95674051
   2.30685518  2.34824380 10.73235299
   1.50543122  3.71202989  4.51983476
   4.01073403  0.95170055 12.16925874
   1.25265140  0.95170055  4.51983476
   4.26351385  3.71202989 12.16925874
   4.34838010  4.03730710  3.82382530
   1.16778515  1.27697776 12.86526820
   3.92586777  1.27697776  3.82382530
   1.59029748  4.03730710 12.86526820
   5.09814716  5.02867574 14.31262216
   0.41801809  2.26834640  2.37647134
   3.17610072  2.26834640 14.31262216
   2.34006453  5.02867574  2.37647134
   4.08760096  4.07965354  0.03428357
   1.42856429  1.31932420 16.65480993
   4.18664691  1.31932420  0.03428357
   1.32951834  4.07965354 16.65480993
   4.18763088  4.15666142  8.37758565
   1.32853437  1.39633208  8.31150785
   4.08661699  1.39633208  8.37758565
   1.42954826  4.15666142  8.31150785
 


--------------------------------------------------------------------------------------------------------


 k-point  1 :   0.0000 0.0000 0.0000  plane waves:   13703
 k-point  2 :   0.2000 0.0000 0.0000  plane waves:   13697
 k-point  3 :   0.4000 0.0000 0.0000  plane waves:   13674
 k-point  4 :   0.0000 0.2000 0.0000  plane waves:   13701
 k-point  5 :   0.2000 0.2000 0.0000  plane waves:   13687
 k-point  6 :   0.4000 0.2000 0.0000  plane waves:   13669
 k-point  7 :   0.0000 0.4000 0.0000  plane waves:   13668
 k-point  8 :   0.2000 0.4000 0.0000  plane waves:   13665
 k-point  9 :   0.4000 0.4000 0.0000  plane waves:   13672
 k-point 10 :   0.0000 0.0000 0.3333  plane waves:   13686
 k-point 11 :   0.2000 0.0000 0.3333  plane waves:   13703
 k-point 12 :   0.4000 0.0000 0.3333  plane waves:   13676
 k-point 13 :   0.0000 0.2000 0.3333  plane waves:   13716
 k-point 14 :   0.2000 0.2000 0.3333  plane waves:   13674
 k-point 15 :   0.4000 0.2000 0.3333  plane waves:   13683
 k-point 16 :   0.0000 0.4000 0.3333  plane waves:   13672
 k-point 17 :   0.2000 0.4000 0.3333  plane waves:   13685
 k-point 18 :   0.4000 0.4000 0.3333  plane waves:   13707

 maximum and minimum number of plane-waves per node :     13716    13665

 maximum number of plane-waves:     13716
 maximum index in each direction: 
   IXMAX=   10   IYMAX=   10   IZMAX=   31
   IXMIN=  -10   IYMIN=  -10   IZMIN=  -31

 The following grids will avoid any aliasing or wrap around errors in the Hartre
 e energy
  - symmetry arguments have not been applied
  - exchange correlation energies might require even more grid points
  - we recommend to set PREC=Normal or Accurate and rely on VASP defaults
 WARNING: aliasing errors must be expected set NGX to    42 to avoid them
 WARNING: aliasing errors must be expected set NGY to    42 to avoid them
 WARNING: aliasing errors must be expected set NGZ to   126 to avoid them

 serial   3D FFT for wavefunctions
 parallel 3D FFT for charge:
    minimum data exchange during FFTs selected (reduces bandwidth)

 
 Radii for the augmentation spheres in the non-local exchange
 for species   1 augmentation radius   1.357 (default was   1.086)
       energy cutoff for augmentation   2080.0
 for species   2 augmentation radius   1.478 (default was   1.182)
       energy cutoff for augmentation   2080.0
 for species   3 augmentation radius   0.902 (default was   0.722)
       energy cutoff for augmentation   2080.0
 Maximum index for augmentation-charges in exchange         2621
  SETUP_FOCK is finished

 total amount of memory used by VASP MPI-rank0   290168. kBytes
=======================================================================

   base      :      30000. kBytes
   nonl-proj :     114656. kBytes
   fftplans  :       3114. kBytes
   grid      :      10078. kBytes
   one-center:       1119. kBytes
   HF        :        194. kBytes
   nonlr-proj:       8667. kBytes
   wavefun   :     122340. kBytes
 
     INWAV:  cpu time    9.1077: real time    9.5547
 Broyden mixing: mesh for mixing (old mesh)
   NGX = 21   NGY = 21   NGZ = 63
  (NGX  = 64   NGY  = 64   NGZ  =192)
  gives a total of  27783 points

 charge density for first step will be calculated from the start-wavefunctions


--------------------------------------------------------------------------------------------------------


 Maximum index for augmentation-charges         2345 (set IRDMAX)


--------------------------------------------------------------------------------------------------------


 initial charge from wavefunction
 First call to EWALD:  gamma=   0.222
 Maximum number of real-space cells 4x 4x 2
 Maximum number of reciprocal cells 2x 2x 5

    FEWALD:  cpu time    0.0028: real time    0.0028


--------------------------------------- Iteration      1(   1)  ---------------------------------------


    POTLOK:  cpu time    0.2523: real time    0.2541
    SETDIJ:  cpu time    0.3815: real time    0.3815
    TRIAL :  cpu time65215.5472: real time65272.6280