Stage_1/DOS OUTCAR.out output for 1004: Bi2WO6_1_001_HSE06
Status: terminatedvasp.6.4.1 05Apr23 (build Apr 16 2023 21:42:41) complex MD_VERSION_INFO: Compiled 2023-04-16T20:12:19-UTC in mrdevlin:/home/medea/data/ build/vasp6.4.1/19212/x86_64/src/src/build/std from svn 19212 This VASP executable licensed from Materials Design, Inc. executed on Lin64 date 2025.04.11 12:26:28 running 96 mpi-ranks, on 2 nodes distrk: each k-point on 96 cores, 1 groups distr: one band on NCORE= 12 cores, 8 groups -------------------------------------------------------------------------------------------------------- INCAR: LPLANE = .TRUE. NCORE = 8 NPAR = 8 LSCALU = .FALSE. NSIM = 4 SYSTEM = Bi2WO6_1_001_HSE06 LORBIT = 10 PREC = Normal ENCUT = 400.000 IBRION = -1 NSW = 0 ISIF = 0 NELMIN = 2 EDIFF = 1.0e-08 VOSKOWN = 1 NWRITE = 1 NELM = 60 LHFCALC = .TRUE. HFSCREEN = 0.2 PRECFOCK = Normal ALGO = All TIME = 0.4 LMAXFOCK = 4 NKREDX = 2 NKREDY = 2 NKREDZ = 2 IVDW = 12 VDW_S6 = 1.000 VDW_S8 = 2.310 VDW_A1 = 0.383 VDW_A2 = 5.685 ISPIN = 2 INIWAV = 1 ISTART = 1 NBANDS = 480 ICHARG = 0 LWAVE = .FALSE. LCHARG = .FALSE. ADDGRID = .TRUE. ISMEAR = 0 SIGMA = 0.05 LREAL = .FALSE. LSCALAPACK = .FALSE. RWIGS = 1.46 1.30 0.73 NEDOS = 2000 NPAR = 96 POTCAR: PAW_PBE Bi_d 06Sep2000 POTCAR: PAW_PBE W_sv 04Sep2015 POTCAR: PAW_PBE O 08Apr2002 ----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | You use a magnetic or noncollinear calculation, but did not specify | | the initial magnetic moment with the MAGMOM tag. Note that a | | default of 1 will be used for all atoms. This ferromagnetic setup | | may break the symmetry of the crystal, in particular it may rule | | out finding an antiferromagnetic solution. Thence, we recommend | | setting the initial magnetic moment manually or verifying carefully | | that this magnetic setup is desired. | | | ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | The value NCORE = 8 specified in the INCAR file was overwritten, | | because it was not compatible with the 96 processes available: | | NCORE = 12 | | was used instead, please check that this makes sense for your | | machine. | | | ----------------------------------------------------------------------------- POTCAR: PAW_PBE Bi_d 06Sep2000 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 6 number of lm-projection operators is LMMAX = 18 POTCAR: PAW_PBE W_sv 04Sep2015 local pseudopotential read in partial core-charges read in partial kinetic energy density read in kinetic energy density of atom read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in non local Contribution for L= 2 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 6 number of lm-projection operators is LMMAX = 18 POTCAR: PAW_PBE O 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in kinetic energy density of atom read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 ----------------------------------------------------------------------------- | | | ----> ADVICE to this user running VASP <---- | | | | You have a (more or less) 'large supercell' and for larger cells it | | might be more efficient to use real-space projection operators. | | Therefore, try LREAL= Auto in the INCAR file. | | Mind: For very accurate calculation, you might also keep the | | reciprocal projection scheme (i.e. LREAL=.FALSE.). | | | ----------------------------------------------------------------------------- PAW_PBE Bi_d 06Sep2000 : energy of atom 1 EATOM=-1959.2045 kinetic energy error for atom= 0.0072 (will be added to EATOM!!) PAW_PBE W_sv 04Sep2015 : energy of atom 2 EATOM=-1865.5791 kinetic energy error for atom= 0.0065 (will be added to EATOM!!) PAW_PBE O 08Apr2002 : energy of atom 3 EATOM= -432.3788 kinetic energy error for atom= 0.1156 (will be added to EATOM!!) POSCAR: Bi2WO6_1_001_HSE06 positions in direct lattice No initial velocities read in exchange correlation table for LEXCH = 8 RHO(1)= 0.500 N(1) = 2000 RHO(2)= 100.500 N(2) = 4000 -------------------------------------------------------------------------------------------------------- ion position nearest neighbor table 1 0.511 0.225 0.291- 46 2.10 45 2.11 41 2.29 2 0.239 0.475 0.291- 57 2.10 34 2.11 30 2.29 3 0.989 0.324 0.042- 48 2.10 47 2.12 40 2.29 25 2.61 4 0.261 0.074 0.042- 59 2.10 36 2.12 27 2.29 26 2.61 5 0.011 0.225 0.291- 34 2.10 33 2.11 29 2.29 6 0.739 0.475 0.291- 69 2.10 46 2.11 42 2.29 7 0.489 0.324 0.042- 36 2.10 35 2.12 28 2.29 37 2.61 8 0.761 0.074 0.042- 71 2.10 48 2.12 39 2.29 38 2.61 9 0.511 0.725 0.291- 70 2.10 69 2.11 65 2.29 10 0.239 0.975 0.291- 33 2.10 58 2.11 54 2.29 11 0.989 0.824 0.042- 72 2.10 71 2.12 64 2.29 49 2.61 12 0.261 0.574 0.042- 35 2.10 60 2.12 51 2.29 50 2.61 13 0.011 0.725 0.291- 58 2.10 57 2.11 53 2.29 14 0.739 0.975 0.291- 45 2.10 70 2.11 66 2.29 15 0.489 0.824 0.042- 60 2.10 59 2.12 52 2.29 61 2.61 16 0.761 0.574 0.042- 47 2.10 72 2.12 63 2.29 62 2.61 17 0.264 0.269 0.168- 26 1.79 32 1.82 30 1.83 28 1.86 27 2.43 18 0.486 0.019 0.168- 61 1.79 55 1.82 41 1.83 27 1.86 52 2.43 19 0.764 0.269 0.168- 38 1.79 44 1.82 42 1.83 40 1.86 39 2.43 20 0.986 0.019 0.168- 49 1.79 67 1.82 29 1.83 39 1.86 64 2.43 21 0.264 0.769 0.168- 50 1.79 56 1.82 54 1.83 52 1.86 51 2.43 22 0.486 0.519 0.168- 37 1.79 31 1.82 65 1.83 51 1.86 28 2.43 23 0.764 0.769 0.168- 62 1.79 68 1.82 66 1.83 64 1.86 63 2.43 24 0.986 0.519 0.168- 25 1.79 43 1.82 53 1.83 63 1.86 40 2.43 25 0.088 0.482 0.112- 24 1.79 3 2.61 26 0.162 0.232 0.112- 17 1.79 4 2.61 27 0.352 0.080 0.128- 18 1.86 4 2.29 17 2.43 28 0.398 0.330 0.128- 17 1.86 7 2.29 22 2.43 29 0.057 0.151 0.205- 20 1.83 5 2.29 30 0.193 0.401 0.205- 17 1.83 2 2.29 31 0.445 0.418 0.225- 22 1.82 32 0.305 0.168 0.225- 17 1.82 33 0.065 0.045 0.316- 10 2.10 5 2.11 34 0.185 0.295 0.316- 5 2.10 2 2.11 35 0.310 0.391 0.020- 12 2.10 7 2.12 36 0.440 0.141 0.020- 7 2.10 4 2.12 37 0.588 0.482 0.112- 22 1.79 7 2.61 38 0.662 0.232 0.112- 19 1.79 8 2.61 39 0.852 0.080 0.128- 20 1.86 8 2.29 19 2.43 40 0.898 0.330 0.128- 19 1.86 3 2.29 24 2.43 41 0.557 0.151 0.205- 18 1.83 1 2.29 42 0.693 0.401 0.205- 19 1.83 6 2.29 43 0.945 0.418 0.225- 24 1.82 44 0.805 0.168 0.225- 19 1.82 45 0.565 0.045 0.316- 14 2.10 1 2.11 46 0.685 0.295 0.316- 1 2.10 6 2.11 47 0.810 0.391 0.020- 16 2.10 3 2.12 48 0.940 0.141 0.020- 3 2.10 8 2.12 49 0.088 0.982 0.112- 20 1.79 11 2.61 50 0.162 0.732 0.112- 21 1.79 12 2.61 51 0.352 0.580 0.128- 22 1.86 12 2.29 21 2.43 52 0.398 0.830 0.128- 21 1.86 15 2.29 18 2.43 53 0.057 0.651 0.205- 24 1.83 13 2.29 54 0.193 0.901 0.205- 21 1.83 10 2.29 55 0.445 0.918 0.225- 18 1.82 56 0.305 0.668 0.225- 21 1.82 57 0.065 0.545 0.316- 2 2.10 13 2.11 58 0.185 0.795 0.316- 13 2.10 10 2.11 59 0.310 0.891 0.020- 4 2.10 15 2.12 60 0.440 0.641 0.020- 15 2.10 12 2.12 61 0.588 0.982 0.112- 18 1.79 15 2.61 62 0.662 0.732 0.112- 23 1.79 16 2.61 63 0.852 0.580 0.128- 24 1.86 16 2.29 23 2.43 64 0.898 0.830 0.128- 23 1.86 11 2.29 20 2.43 65 0.557 0.651 0.205- 22 1.83 9 2.29 66 0.693 0.901 0.205- 23 1.83 14 2.29 67 0.945 0.918 0.225- 20 1.82 68 0.805 0.668 0.225- 23 1.82 69 0.565 0.545 0.316- 6 2.10 9 2.11 70 0.685 0.795 0.316- 9 2.10 14 2.11 71 0.810 0.891 0.020- 8 2.10 11 2.12 72 0.940 0.641 0.020- 11 2.10 16 2.12 LATTYP: Found a simple orthorhombic cell. ALAT = 10.7450000000 B/A-ratio = 1.0048580735 C/A-ratio = 2.2393113076 Lattice vectors: A1 = ( 0.0000000000, -10.7450000000, 0.0000000000) A2 = ( 10.7972000000, 0.0000000000, 0.0000000000) A3 = ( 0.0000000000, 0.0000000000, 24.0614000000) Analysis of symmetry for initial positions (statically): ===================================================================== Subroutine PRICEL returns following result: LATTYP: Found a simple orthorhombic cell. ALAT = 5.3725000000 B/A-ratio = 2.0097161470 C/A-ratio = 4.4786226152 Lattice vectors: A1 = ( 0.0000000000, -5.3725000000, 0.0000000000) A2 = ( 10.7972000000, 0.0000000000, 0.0000000000) A3 = ( 0.0000000000, 0.0000000000, 24.0614000000) 2 primitive cells build up your supercell. Routine SETGRP: Setting up the symmetry group for a simple orthorhombic supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 8 trial point group operations. The static configuration has the point symmetry C_1 . Analysis of symmetry for dynamics (positions and initial velocities): ===================================================================== Subroutine PRICEL returns following result: LATTYP: Found a simple orthorhombic cell. ALAT = 5.3725000000 B/A-ratio = 2.0097161470 C/A-ratio = 4.4786226152 Lattice vectors: A1 = ( 0.0000000000, -5.3725000000, 0.0000000000) A2 = ( 10.7972000000, 0.0000000000, 0.0000000000) A3 = ( 0.0000000000, 0.0000000000, 24.0614000000) 2 primitive cells build up your supercell. Routine SETGRP: Setting up the symmetry group for a simple orthorhombic supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 8 trial point group operations. The dynamic configuration has the point symmetry C_1 . Analysis of structural, dynamic, and magnetic symmetry: ===================================================================== Subroutine PRICEL returns following result: LATTYP: Found a simple orthorhombic cell. ALAT = 5.3725000000 B/A-ratio = 2.0097161470 C/A-ratio = 4.4786226152 Lattice vectors: A1 = ( 0.0000000000, -5.3725000000, 0.0000000000) A2 = ( 10.7972000000, 0.0000000000, 0.0000000000) A3 = ( 0.0000000000, 0.0000000000, 24.0614000000) 2 primitive cells build up your supercell. Routine SETGRP: Setting up the symmetry group for a simple orthorhombic supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 8 trial point group operations. The overall configuration has the point symmetry C_1 . Subroutine INISYM returns: Found 1 space group operations (whereof 1 operations are pure point group operations), and found 2 'primitive' translations ---------------------------------------------------------------------------------------- Primitive cell volume of cell : 1395.7527 direct lattice vectors reciprocal lattice vectors 0.000000000 -5.372500000 0.000000000 0.000000000 -0.186133085 0.000000000 10.797200000 0.000000000 0.000000000 0.092616604 0.000000000 0.000000000 0.000000000 0.000000000 24.061400000 0.000000000 0.000000000 0.041560341 length of vectors 5.372500000 10.797200000 24.061400000 0.186133085 0.092616604 0.041560341 position of ions in fractional coordinates (direct lattice) 0.550079860 0.511071440 0.291483260 0.050115060 0.238924060 0.291482540 0.352494560 0.988605140 0.042428880 0.852523080 0.261368250 0.042403340 0.550126040 0.011064690 0.291467810 0.050123720 0.738936100 0.291468720 0.352533220 0.488615060 0.042409890 0.852493160 0.761390770 0.042417670 0.461557140 0.264046420 0.167969390 0.961522480 0.485953580 0.167984650 0.461780980 0.764198520 0.167963220 0.961671740 0.985818920 0.167958510 0.036494340 0.088108210 0.111718230 0.536490800 0.161880890 0.111698120 0.839322600 0.351592320 0.128313560 0.339369640 0.398358770 0.128330090 0.698906660 0.056656870 0.204815630 0.198977540 0.193359740 0.204814680 0.164742960 0.444775070 0.225470860 0.664785320 0.305247780 0.225465470 0.910700660 0.065247480 0.315878960 0.410701760 0.184760810 0.315883280 0.217095320 0.310441840 0.020278660 0.717078880 0.439551200 0.020283160 0.036502560 0.588109250 0.111699790 0.536507620 0.661873200 0.111697890 0.839249000 0.851567420 0.128324400 0.339244120 0.898375370 0.128340560 0.698948580 0.556662050 0.204806620 0.198901080 0.693350910 0.204824470 0.164706960 0.944753300 0.225452460 0.664737160 0.805258600 0.225438550 0.910718980 0.565251020 0.315880870 0.410685920 0.684764590 0.315875750 0.217100640 0.810452350 0.020274240 0.717089860 0.939548000 0.020275830 ion indices of the primitive-cell ions primitive index ion index 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 17 10 18 11 19 12 20 13 49 14 26 15 27 16 28 17 29 18 30 19 31 20 32 21 33 22 34 23 35 24 36 25 61 26 38 27 39 28 40 29 41 30 42 31 43 32 44 33 45 34 46 35 47 36 48 ---------------------------------------------------------------------------------------- KPOINTS: Automatic mesh Automatic generation of k-mesh. Grid dimensions read from file: generate k-points for: 4 4 2 Generating k-lattice: Cartesian coordinates Fractional coordinates (reciprocal lattice) 0.023154151 0.000000000 0.000000000 0.250000000 0.000000000 0.000000000 0.000000000 0.023266636 0.000000000 0.000000000 0.250000000 0.000000000 0.000000000 0.000000000 0.020780171 0.000000000 0.000000000 0.500000000 Length of vectors 0.023154151 0.023266636 0.020780171 Shift w.r.t. Gamma in fractional coordinates (k-lattice) 0.000000000 0.000000000 0.000000000 Subroutine IBZKPT returns following result: =========================================== Found 20 irreducible k-points: Following reciprocal coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.250000 0.000000 0.000000 2.000000 0.500000 0.000000 0.000000 1.000000 0.000000 0.250000 0.000000 2.000000 0.250000 0.250000 0.000000 2.000000 -0.250000 0.250000 0.000000 2.000000 0.500000 0.250000 0.000000 2.000000 0.000000 0.500000 0.000000 1.000000 0.250000 0.500000 0.000000 2.000000 0.500000 0.500000 0.000000 1.000000 0.000000 0.000000 0.500000 1.000000 0.250000 0.000000 0.500000 2.000000 0.500000 0.000000 0.500000 1.000000 0.000000 0.250000 0.500000 2.000000 0.250000 0.250000 0.500000 2.000000 -0.250000 0.250000 0.500000 2.000000 0.500000 0.250000 0.500000 2.000000 0.000000 0.500000 0.500000 1.000000 0.250000 0.500000 0.500000 2.000000 0.500000 0.500000 0.500000 1.000000 Following cartesian coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 0.023154 0.000000 0.000000 2.000000 0.046308 0.000000 0.000000 1.000000 0.000000 0.023267 0.000000 2.000000 0.023154 0.023267 0.000000 2.000000 -0.023154 0.023267 0.000000 2.000000 0.046308 0.023267 0.000000 2.000000 0.000000 0.046533 0.000000 1.000000 0.023154 0.046533 0.000000 2.000000 0.046308 0.046533 0.000000 1.000000 0.000000 0.000000 0.020780 1.000000 0.023154 0.000000 0.020780 2.000000 0.046308 0.000000 0.020780 1.000000 0.000000 0.023267 0.020780 2.000000 0.023154 0.023267 0.020780 2.000000 -0.023154 0.023267 0.020780 2.000000 0.046308 0.023267 0.020780 2.000000 0.000000 0.046533 0.020780 1.000000 0.023154 0.046533 0.020780 2.000000 0.046308 0.046533 0.020780 1.000000 Subroutine IBZKPT_HF returns following result: ============================================== Found 32 k-points in 1st BZ the following 32 k-points will be used (e.g. in the exchange kernel) Following reciprocal coordinates: # in IRBZ 0.000000 0.000000 0.000000 0.03125000 1 t-inv F 0.250000 0.000000 0.000000 0.03125000 2 t-inv F 0.500000 0.000000 0.000000 0.03125000 3 t-inv F 0.000000 0.250000 0.000000 0.03125000 4 t-inv F 0.250000 0.250000 0.000000 0.03125000 5 t-inv F -0.250000 0.250000 0.000000 0.03125000 6 t-inv F 0.500000 0.250000 0.000000 0.03125000 7 t-inv F 0.000000 0.500000 0.000000 0.03125000 8 t-inv F 0.250000 0.500000 0.000000 0.03125000 9 t-inv F 0.500000 0.500000 0.000000 0.03125000 10 t-inv F 0.000000 0.000000 0.500000 0.03125000 11 t-inv F 0.250000 0.000000 0.500000 0.03125000 12 t-inv F 0.500000 0.000000 0.500000 0.03125000 13 t-inv F 0.000000 0.250000 0.500000 0.03125000 14 t-inv F 0.250000 0.250000 0.500000 0.03125000 15 t-inv F -0.250000 0.250000 0.500000 0.03125000 16 t-inv F 0.500000 0.250000 0.500000 0.03125000 17 t-inv F 0.000000 0.500000 0.500000 0.03125000 18 t-inv F 0.250000 0.500000 0.500000 0.03125000 19 t-inv F 0.500000 0.500000 0.500000 0.03125000 20 t-inv F -0.250000 0.000000 0.000000 0.03125000 2 t-inv T 0.000000 -0.250000 0.000000 0.03125000 4 t-inv T -0.250000 -0.250000 0.000000 0.03125000 5 t-inv T 0.250000 -0.250000 0.000000 0.03125000 6 t-inv T -0.500000 -0.250000 0.000000 0.03125000 7 t-inv T -0.250000 -0.500000 0.000000 0.03125000 9 t-inv T -0.250000 0.000000 -0.500000 0.03125000 12 t-inv T 0.000000 -0.250000 -0.500000 0.03125000 14 t-inv T -0.250000 -0.250000 -0.500000 0.03125000 15 t-inv T 0.250000 -0.250000 -0.500000 0.03125000 16 t-inv T -0.500000 -0.250000 -0.500000 0.03125000 17 t-inv T -0.250000 -0.500000 -0.500000 0.03125000 19 t-inv T -------------------------------------------------------------------------------------------------------- Dimension of arrays: k-points NKPTS = 20 k-points in BZ NKDIM = 32 number of bands NBANDS= 480 number of dos NEDOS = 2000 number of ions NIONS = 72 non local maximal LDIM = 6 non local SUM 2l+1 LMDIM = 18 total plane-waves NPLWV = 349920 max r-space proj IRMAX = 1 max aug-charges IRDMAX= 57434 dimension x,y,z NGX = 54 NGY = 54 NGZ = 120 dimension x,y,z NGXF= 108 NGYF= 108 NGZF= 240 support grid NGXF= 216 NGYF= 216 NGZF= 480 ions per type = 16 8 48 NGX,Y,Z is equivalent to a cutoff of 8.31, 8.35, 8.29 a.u. NGXF,Y,Z is equivalent to a cutoff of 16.63, 16.71, 16.58 a.u. SYSTEM = Bi2WO6_1_001_HSE06 POSCAR = Bi2WO6_1_001_HSE06 Startparameter for this run: NWRITE = 1 write-flag & timer PREC = normal normal or accurate (medium, high low for compatibility) ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 0 charge: 1-file 2-atom 10-const ISPIN = 2 spin polarized calculation? LNONCOLLINEAR = F non collinear calculations LSORBIT = F spin-orbit coupling INIWAV = 1 electr: 0-lowe 1-rand 2-diag LASPH = F aspherical Exc in radial PAW Electronic Relaxation 1 ENCUT = 400.0 eV 29.40 Ry 5.42 a.u. 17.61 17.52 39.24*2*pi/ulx,y,z ENINI = 400.0 initial cutoff ENAUG = 605.4 eV augmentation charge cutoff NELM = 60; NELMIN= 2; NELMDL= 0 # of ELM steps EDIFF = 0.1E-07 stopping-criterion for ELM LREAL = F real-space projection NLSPLINE = F spline interpolate recip. space projectors LCOMPAT= F compatible to vasp.4.4 GGA_COMPAT = T GGA compatible to vasp.4.4-vasp.4.6 LMAXPAW = -100 max onsite density LMAXMIX = 2 max onsite mixed and CHGCAR VOSKOWN= 1 Vosko Wilk Nusair interpolation ROPT = 0.00000 0.00000 0.00000 Ionic relaxation EDIFFG = 0.1E-06 stopping-criterion for IOM NSW = 0 number of steps for IOM NBLOCK = 1; KBLOCK = 1 inner block; outer block IBRION = -1 ionic relax: 0-MD 1-quasi-New 2-CG NFREE = 0 steps in history (QN), initial steepest desc. (CG) ISIF = 0 stress and relaxation IWAVPR = 10 prediction: 0-non 1-charg 2-wave 3-comb ISYM = 3 0-nonsym 1-usesym 2-fastsym LCORR = T Harris-Foulkes like correction to forces POTIM = 0.5000 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run SMASS = -3.00 Nose mass-parameter (am) estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps = 0.13E+47 mass= -0.266E-26a.u. SCALEE = 1.0000 scale energy and forces NPACO = 256; APACO = 10.0 distance and # of slots for P.C. PSTRESS= 0.0 pullay stress Mass of Ions in am POMASS = 208.98183.85 16.00 Ionic Valenz ZVAL = 15.00 14.00 6.00 Atomic Wigner-Seitz radii RWIGS = 1.46 1.30 0.73 virtual crystal weights VCA = 1.00 1.00 1.00 NELECT = 640.0000 total number of electrons NUPDOWN= -1.0000 fix difference up-down DOS related values: EMIN = 10.00; EMAX =-10.00 energy-range for DOS EFERMI = 0.00; METHOD = LEGACY ISMEAR = 0; SIGMA = 0.05 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details) IALGO = 58 algorithm LDIAG = T sub-space diagonalisation (order eigenvalues) LSUBROT= F optimize rotation matrix (better conditioning) TURBO = 0 0=normal 1=particle mesh IRESTART = 0 0=no restart 2=restart with 2 vectors NREBOOT = 0 no. of reboots NMIN = 0 reboot dimension EREF = 0.00 reference energy to select bands IMIX = 4 mixing-type and parameters AMIX = 0.40; BMIX = 1.00 AMIX_MAG = 1.60; BMIX_MAG = 1.00 AMIN = 0.10 WC = 100.; INIMIX= 1; MIXPRE= 1; MAXMIX= -45 Intra band minimization: WEIMIN = 0.0000 energy-eigenvalue tresh-hold EBREAK = 0.52E-11 absolut break condition DEPER = 0.30 relativ break condition TIME = 0.40 timestep for ELM volume/ion in A,a.u. = 38.77 261.64 Fermi-wavevector in a.u.,A,eV,Ry = 1.001971 1.893451 13.659525 1.003947 Thomas-Fermi vector in A = 2.134428 Write flags LWAVE = F write WAVECAR LDOWNSAMPLE = F k-point downsampling of WAVECAR LCHARG = F write CHGCAR LVTOT = F write LOCPOT, total local potential LVHAR = F write LOCPOT, Hartree potential only LELF = F write electronic localiz. function (ELF) LORBIT = 10 0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes Dipole corrections LMONO = F monopole corrections only (constant potential shift) LDIPOL = F correct potential (dipole corrections) IDIPOL = 0 1-x, 2-y, 3-z, 4-all directions EPSILON= 1.0000000 bulk dielectric constant Exchange correlation treatment: GGA = -- GGA type LEXCH = 8 internal setting for exchange type LIBXC = F Libxc VOSKOWN = 1 Vosko Wilk Nusair interpolation EXXOEP = 0 0=HF, 1=EXX-LHF (local Hartree Fock) 2=EXX OEP LHFCALC = T Hartree Fock is set to LSYMGRAD= F symmetrize gradient (conserves proper symmetry) PRECFOCK=normal Normal, Fast or Accurate (Low or Medium for compatibility) LRHFCALC= F long range Hartree Fock LRSCOR = F long range correlation only (use DFT for short range part) LTHOMAS = F Thomas Fermi screening in HF LMODELHF= F short range full HF, long range fraction AEXX FOCKCORR= 1 mode to apply convergence corrections LFOCKACE= T use Adeptively-Compressed-Exchange operator ENCUT4O = -1.0 cutoff for four orbital integrals eV LMAXFOCK= 4 L truncation for augmentation on plane wave grid LMAXFOCKAE= -1 L truncation for all-electron charge restoration on plane wave grid NMAXFOCKAE= 1 number of basis functions for all-electron charge restoration LFOCKAEDFT= F apply the AE augmentation even for DFT NKREDX = 2 reduce k-point grid by NKREDY = 2 reduce k-point grid by NKREDZ = 2 reduce k-point grid by SHIFTRED= F shift reduced grid of Gamma HFKIDENT= F idential grid for each k-point ODDONLY = F use only odd q-grid points EVENONLY= F use only even q-grid points HFALPHA = -1.0000 decay constant for conv. correction MCALPHA = 0.0000 extent of test-charge in conv. correction in multipole expansion AEXX = 0.2500 exact exchange contribution HFSCREEN= 0.2000 screening length (either q_TF or 0.3 A-1) HFSCREENC= 0.2000 screening length for correlation (either q_TF or 0.3 A-1) HFRCUT = 0.0000 spherical cutoff for potential kernel ALDAX = 0.7500 LDA exchange part AGGAX = 0.7500 GGA exchange part ALDAC = 1.0000 LDA correlation AGGAC = 1.0000 GGA correlation ENCUTFOCK= -1.0 apply spherical cutoff to Coloumb kernel NBANDSGWLOW= 1 first orbital included in HF term NBLOCK_FOCK= 64 blocking factor in FOCK_ACC Linear response parameters LEPSILON= F determine dielectric tensor LRPA = F only Hartree local field effects (RPA) LNABLA = F use nabla operator in PAW spheres LVEL = F velocity operator in full k-point grid CSHIFT =0.1000 complex shift for real part using Kramers Kronig OMEGAMAX= -1.0 maximum frequency DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate RTIME = -0.100 relaxation time in fs (WPLASMAI= 0.000 imaginary part of plasma frequency in eV, 0.658/RTIME) DFIELD = 0.0000000 0.0000000 0.0000000 field for delta impulse in time Optional k-point grid parameters LKPOINTS_OPT = F use optional k-point grid KPOINTS_OPT_MODE= 1 mode for optional k-point grid Orbital magnetization related: ORBITALMAG= F switch on orbital magnetization LCHIMAG = F perturbation theory with respect to B field DQ = 0.001000 dq finite difference perturbation B field LLRAUG = F two centre corrections for induced B field LBONE = F B-component reconstruction in AE one-centre LVGVCALC = T calculate vGv susceptibility LVGVAPPL = F apply vGv susceptibility instead of pGv for G=0 Random number generation: RANDOM_GENERATOR = DEFAULT PCG_SEED = not used -------------------------------------------------------------------------------------------------------- Static calculation charge density and potential will be updated during run spin polarized calculation Conjugate gradient for all bands (Freysoldt, et al. PRB 79, 241103 (2009)) preconditioned conjugated gradient perform sub-space diagonalisation before iterative eigenvector-optimisation modified Broyden-mixing scheme, WC = 100.0 initial mixing is a Kerker type mixing with AMIX = 0.4000 and BMIX = 1.0000 Hartree-type preconditioning will be used using additional bands 160 reciprocal scheme for non local part use partial core corrections no Harris-corrections to forces use gradient corrections use of overlap-Matrix (Vanderbilt PP) Gauss-broadening in eV SIGMA = 0.05 -------------------------------------------------------------------------------------------------------- energy-cutoff : 400.00 volume of cell : 2791.51 direct lattice vectors reciprocal lattice vectors 10.797200000 0.000000000 0.000000000 0.092616604 0.000000000 0.000000000 0.000000000 10.745000000 0.000000000 0.000000000 0.093066543 0.000000000 0.000000000 0.000000000 24.061400000 0.000000000 0.000000000 0.041560341 length of vectors 10.797200000 10.745000000 24.061400000 0.092616604 0.093066543 0.041560341 old parameters found on file WAVECAR: energy-cutoff : 400.00 volume of cell : 2791.51 direct lattice vectors reciprocal lattice vectors 10.797200000 0.000000000 0.000000000 0.092616604 0.000000000 0.000000000 0.000000000 10.745000000 0.000000000 0.000000000 0.093066543 0.000000000 0.000000000 0.000000000 24.061400000 0.000000000 0.000000000 0.041560341 length of vectors k-points in units of 2pi/SCALE and weight: Automatic mesh 0.00000000 0.00000000 0.00000000 0.031 0.02315415 0.00000000 0.00000000 0.062 0.04630830 0.00000000 0.00000000 0.031 0.00000000 0.02326664 0.00000000 0.062 0.02315415 0.02326664 0.00000000 0.062 -0.02315415 0.02326664 0.00000000 0.062 0.04630830 0.02326664 0.00000000 0.062 0.00000000 0.04653327 0.00000000 0.031 0.02315415 0.04653327 0.00000000 0.062 0.04630830 0.04653327 0.00000000 0.031 0.00000000 0.00000000 0.02078017 0.031 0.02315415 0.00000000 0.02078017 0.062 0.04630830 0.00000000 0.02078017 0.031 0.00000000 0.02326664 0.02078017 0.062 0.02315415 0.02326664 0.02078017 0.062 -0.02315415 0.02326664 0.02078017 0.062 0.04630830 0.02326664 0.02078017 0.062 0.00000000 0.04653327 0.02078017 0.031 0.02315415 0.04653327 0.02078017 0.062 0.04630830 0.04653327 0.02078017 0.031 k-points in reciprocal lattice and weights: Automatic mesh 0.00000000 0.00000000 0.00000000 0.031 0.25000000 0.00000000 0.00000000 0.062 0.50000000 0.00000000 0.00000000 0.031 0.00000000 0.25000000 0.00000000 0.062 0.25000000 0.25000000 0.00000000 0.062 -0.25000000 0.25000000 0.00000000 0.062 0.50000000 0.25000000 0.00000000 0.062 0.00000000 0.50000000 0.00000000 0.031 0.25000000 0.50000000 0.00000000 0.062 0.50000000 0.50000000 0.00000000 0.031 0.00000000 0.00000000 0.50000000 0.031 0.25000000 0.00000000 0.50000000 0.062 0.50000000 0.00000000 0.50000000 0.031 0.00000000 0.25000000 0.50000000 0.062 0.25000000 0.25000000 0.50000000 0.062 -0.25000000 0.25000000 0.50000000 0.062 0.50000000 0.25000000 0.50000000 0.062 0.00000000 0.50000000 0.50000000 0.031 0.25000000 0.50000000 0.50000000 0.062 0.50000000 0.50000000 0.50000000 0.031 position of ions in fractional coordinates (direct lattice) 0.51107144 0.22496007 0.29148326 0.23892406 0.47494247 0.29148254 0.98860514 0.32375272 0.04242888 0.26136825 0.07373846 0.04240334 0.01106469 0.22493698 0.29146781 0.73893610 0.47493814 0.29146872 0.48861506 0.32373339 0.04240989 0.76139077 0.07375342 0.04241767 0.51107144 0.72496007 0.29148326 0.23892406 0.97494247 0.29148254 0.98860514 0.82375272 0.04242888 0.26136825 0.57373846 0.04240334 0.01106469 0.72493698 0.29146781 0.73893610 0.97493814 0.29146872 0.48861506 0.82373339 0.04240989 0.76139077 0.57375342 0.04241767 0.26404642 0.26922143 0.16796939 0.48595358 0.01923876 0.16798465 0.76419852 0.26910951 0.16796322 0.98581892 0.01916413 0.16795851 0.26404642 0.76922143 0.16796939 0.48595358 0.51923876 0.16798465 0.76419852 0.76910951 0.16796322 0.98581892 0.51916413 0.16795851 0.08810821 0.48175283 0.11171823 0.16188089 0.23175460 0.11169812 0.35159232 0.08033870 0.12831356 0.39835877 0.33031518 0.12833009 0.05665687 0.15054667 0.20481563 0.19335974 0.40051123 0.20481468 0.44477507 0.41762852 0.22547086 0.30524778 0.16760734 0.22546547 0.06524748 0.04464967 0.31587896 0.18476081 0.29464912 0.31588328 0.31044184 0.39145234 0.02027866 0.43955120 0.14146056 0.02028316 0.58810925 0.48174872 0.11169979 0.66187320 0.23174619 0.11169789 0.85156742 0.08037550 0.12832440 0.89837537 0.33037794 0.12834056 0.55666205 0.15052571 0.20480662 0.69335091 0.40054946 0.20482447 0.94475330 0.41764652 0.22545246 0.80525860 0.16763142 0.22543855 0.56525102 0.04464051 0.31588087 0.68476459 0.29465704 0.31587575 0.81045235 0.39144968 0.02027424 0.93954800 0.14145507 0.02027583 0.08810821 0.98175283 0.11171823 0.16188089 0.73175460 0.11169812 0.35159232 0.58033870 0.12831356 0.39835877 0.83031518 0.12833009 0.05665687 0.65054667 0.20481563 0.19335974 0.90051123 0.20481468 0.44477507 0.91762852 0.22547086 0.30524778 0.66760734 0.22546547 0.06524748 0.54464967 0.31587896 0.18476081 0.79464912 0.31588328 0.31044184 0.89145234 0.02027866 0.43955120 0.64146056 0.02028316 0.58810925 0.98174872 0.11169979 0.66187320 0.73174619 0.11169789 0.85156742 0.58037550 0.12832440 0.89837537 0.83037794 0.12834056 0.55666205 0.65052571 0.20480662 0.69335091 0.90054946 0.20482447 0.94475330 0.91764652 0.22545246 0.80525860 0.66763142 0.22543855 0.56525102 0.54464051 0.31588087 0.68476459 0.79465704 0.31587575 0.81045235 0.89144968 0.02027424 0.93954800 0.64145507 0.02027583 position of ions in cartesian coordinates (Angst): 5.51814055 2.41719595 7.01349531 2.57971086 5.10325684 7.01347799 10.67416742 3.47872298 1.02089825 2.82204527 0.79231975 1.02028373 0.11946767 2.41694785 7.01312356 7.97844086 5.10321031 7.01314546 5.27567453 3.47851528 1.02044133 8.22088842 0.79248050 1.02062852 5.51814055 7.78969595 7.01349531 2.57971086 10.47575684 7.01347799 10.67416742 8.85122298 1.02089825 2.82204527 6.16481975 1.02028373 0.11946767 7.78944785 7.01312356 7.97844086 10.47571031 7.01314546 5.27567453 8.85101528 1.02044133 8.22088842 6.16498050 1.02062852 2.85096201 2.89278427 4.04157868 5.24693799 0.20672048 4.04194586 8.25120426 2.89158168 4.04143022 10.64408404 0.20591858 4.04131689 2.85096201 8.26528427 4.04157868 5.24693799 5.57922048 4.04194586 8.25120426 8.26408168 4.04143022 10.64408404 5.57841858 4.04131689 0.95132197 5.17643416 2.68809702 1.74786035 2.49020318 2.68761314 3.79621260 0.86323933 3.08740389 4.30115931 3.54923661 3.08780163 0.61173556 1.61762397 4.92815080 2.08774378 4.30349317 4.92812794 4.80232539 4.48741845 5.42514455 3.29582133 1.80094087 5.42501486 0.70449009 0.47976070 7.60049001 1.99489942 3.16600479 7.60059395 3.35190263 4.20615539 0.48793295 4.74592222 1.51999372 0.48804123 6.34993319 5.17639000 2.68765333 7.14637732 2.49011281 2.68760761 9.19454375 0.86363475 3.08766472 9.69993854 3.54991097 3.08805355 6.01039149 1.61739875 4.92793401 7.48624845 4.30390395 4.92836350 10.20069033 4.48761186 5.42470182 8.69453816 1.80119961 5.42436713 6.10312831 0.47966228 7.60053597 7.39354023 3.16608989 7.60041277 8.75061611 4.20612681 0.48782660 10.14448767 1.51993473 0.48786486 0.95132197 10.54893416 2.68809702 1.74786035 7.86270318 2.68761314 3.79621260 6.23573933 3.08740389 4.30115931 8.92173661 3.08780163 0.61173556 6.99012397 4.92815080 2.08774378 9.67599317 4.92812794 4.80232539 9.85991845 5.42514455 3.29582133 7.17344087 5.42501486 0.70449009 5.85226070 7.60049001 1.99489942 8.53850479 7.60059395 3.35190263 9.57865539 0.48793295 4.74592222 6.89249372 0.48804123 6.34993319 10.54889000 2.68765333 7.14637732 7.86261281 2.68760761 9.19454375 6.23613475 3.08766472 9.69993854 8.92241097 3.08805355 6.01039149 6.98989875 4.92793401 7.48624845 9.67640395 4.92836350 10.20069033 9.86011186 5.42470182 8.69453816 7.17369961 5.42436713 6.10312831 5.85216228 7.60053597 7.39354023 8.53858989 7.60041277 8.75061611 9.57862681 0.48782660 10.14448767 6.89243473 0.48786486 -------------------------------------------------------------------------------------------------------- k-point 1 : 0.0000 0.0000 0.0000 plane waves: 50743 k-point 2 : 0.2500 0.0000 0.0000 plane waves: 50695 k-point 3 : 0.5000 0.0000 0.0000 plane waves: 50744 k-point 4 : 0.0000 0.2500 0.0000 plane waves: 50711 k-point 5 : 0.2500 0.2500 0.0000 plane waves: 50704 k-point 6 : -0.2500 0.2500 0.0000 plane waves: 50704 k-point 7 : 0.5000 0.2500 0.0000 plane waves: 50726 k-point 8 : 0.0000 0.5000 0.0000 plane waves: 50700 k-point 9 : 0.2500 0.5000 0.0000 plane waves: 50706 k-point 10 : 0.5000 0.5000 0.0000 plane waves: 50644 k-point 11 : 0.0000 0.0000 0.5000 plane waves: 50738 k-point 12 : 0.2500 0.0000 0.5000 plane waves: 50754 k-point 13 : 0.5000 0.0000 0.5000 plane waves: 50728 k-point 14 : 0.0000 0.2500 0.5000 plane waves: 50766 k-point 15 : 0.2500 0.2500 0.5000 plane waves: 50740 k-point 16 : -0.2500 0.2500 0.5000 plane waves: 50740 k-point 17 : 0.5000 0.2500 0.5000 plane waves: 50668 k-point 18 : 0.0000 0.5000 0.5000 plane waves: 50696 k-point 19 : 0.2500 0.5000 0.5000 plane waves: 50652 k-point 20 : 0.5000 0.5000 0.5000 plane waves: 50656 maximum and minimum number of plane-waves per node : 4306 4126 maximum number of plane-waves: 50766 maximum index in each direction: IXMAX= 17 IYMAX= 17 IZMAX= 39 IXMIN= -18 IYMIN= -18 IZMIN= -39 The following grids will avoid any aliasing or wrap around errors in the Hartre e energy - symmetry arguments have not been applied - exchange correlation energies might require even more grid points - we recommend to set PREC=Normal or Accurate and rely on VASP defaults WARNING: aliasing errors must be expected set NGX to 72 to avoid them WARNING: aliasing errors must be expected set NGY to 72 to avoid them WARNING: aliasing errors must be expected set NGZ to 160 to avoid them parallel 3D FFT for wavefunctions: minimum data exchange during FFTs selected (reduces bandwidth) parallel 3D FFT for charge: minimum data exchange during FFTs selected (reduces bandwidth) Radii for the augmentation spheres in the non-local exchange for species 1 augmentation radius 1.357 (default was 1.086) energy cutoff for augmentation 1600.0 for species 2 augmentation radius 1.478 (default was 1.182) energy cutoff for augmentation 1600.0 for species 3 augmentation radius 0.902 (default was 0.722) energy cutoff for augmentation 1600.0 real space projection operators: total allocation : 8056.77 KBytes max/ min on nodes : 918.94 423.67 Maximum index for augmentation-charges in exchange 261 SETUP_FOCK is finished total amount of memory used by VASP MPI-rank0 596422. kBytes ======================================================================= base : 30000. kBytes nonl-proj : 42301. kBytes fftplans : 7539. kBytes grid : 7193. kBytes one-center: 186. kBytes HF : 129. kBytes nonlr-proj: 3118. kBytes wavefun : 505956. kBytes Broyden mixing: mesh for mixing (old mesh) NGX = 35 NGY = 35 NGZ = 79 (NGX =108 NGY =108 NGZ =240) gives a total of 96775 points charge density for first step will be calculated from the start-wavefunctions -------------------------------------------------------------------------------------------------------- Maximum index for augmentation-charges 2107 (set IRDMAX) -------------------------------------------------------------------------------------------------------- initial charge from wavefunction First call to EWALD: gamma= 0.126 Maximum number of real-space cells 3x 3x 2 Maximum number of reciprocal cells 2x 2x 4 --------------------------------------- Ionic step 1 ------------------------------------------- --------------------------------------- Iteration 1( 1) --------------------------------------- -------------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) :-0.6311550E+03 (-0.1657712E+01) number of electron 640.0000017 magnetization 0.0000000 augmentation part 158.7649027 magnetization 0.0000002 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 987.77837239 Ewald energy TEWEN = 225674.38504968 -Hartree energ DENC = -286937.79849506 -exchange EXHF = 1779.02471162 -V(xc)+E(xc) XCENC = 1983.74287352 PAW double counting = 78600.29958717 -77927.91051796 entropy T*S EENTRO = -0.00000000 eigenvalues EBANDS = -11636.11736386 atomic energy EATOM = 66845.44081335 --------------------------------------------------- free energy TOTEN = -631.15496915 eV energy without entropy = -631.15496915 energy(sigma->0) = -631.15496915 exchange ACFDT corr. = -0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 2) --------------------------------------- -------------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) :-0.1668922E+01 (-0.8053070E+00) number of electron 640.0000017 magnetization 0.0000000 augmentation part 158.6190569 magnetization 0.0000012 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 987.77837239 Ewald energy TEWEN = 225674.38504968 -Hartree energ DENC = -286959.00765737 -exchange EXHF = 1783.10582787 -V(xc)+E(xc) XCENC = 1985.41100149 PAW double counting = 79956.16246723 -79272.79870073 entropy T*S EENTRO = -0.00000000 eigenvalues EBANDS = -11633.30106532 atomic energy EATOM = 66845.44081335 --------------------------------------------------- free energy TOTEN = -632.82389140 eV energy without entropy = -632.82389140 energy(sigma->0) = -632.82389140 exchange ACFDT corr. = -0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 3) --------------------------------------- -------------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) :-0.8048967E+00 (-0.1461366E+00) number of electron 640.0000017 magnetization 0.0000000 augmentation part 158.5998049 magnetization 0.0000001 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 987.77837239 Ewald energy TEWEN = 225674.38504968 -Hartree energ DENC = -286914.63656630 -exchange EXHF = 1783.41777303 -V(xc)+E(xc) XCENC = 1983.65267505 PAW double counting = 80642.81598724 -79960.10533236 entropy T*S EENTRO = -0.00000000 eigenvalues EBANDS = -11676.37756016 atomic energy EATOM = 66845.44081335 --------------------------------------------------- free energy TOTEN = -633.62878808 eV energy without entropy = -633.62878808 energy(sigma->0) = -633.62878808 exchange ACFDT corr. = -0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 4) --------------------------------------- -------------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) :-0.1457194E+00 (-0.1283017E+00) number of electron 640.0000017 magnetization 0.0000000 augmentation part 158.6944022 magnetization 0.0000002 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 987.77837239 Ewald energy TEWEN = 225674.38504968 -Hartree energ DENC = -286925.46731036 -exchange EXHF = 1783.98180081 -V(xc)+E(xc) XCENC = 1983.77197612 PAW double counting = 80671.47306298 -79989.20209652 entropy T*S EENTRO = -0.00000000 eigenvalues EBANDS = -11665.93617593 atomic energy EATOM = 66845.44081335 --------------------------------------------------- free energy TOTEN = -633.77450748 eV energy without entropy = -633.77450748 energy(sigma->0) = -633.77450748 exchange ACFDT corr. = -0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 5) --------------------------------------- -------------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) :-0.1278425E+00 (-0.5783223E-01) number of electron 640.0000017 magnetization 0.0000000 augmentation part 158.8093523 magnetization 0.0000002 Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 987.77837239 Ewald energy TEWEN = 225674.38504968 -Hartree energ DENC = -286954.88072791 -exchange EXHF = 1785.02727793 -V(xc)+E(xc) XCENC = 1984.45994412 PAW double counting = 80600.80549890 -79918.88353339 entropy T*S EENTRO = -0.00000000 eigenvalues EBANDS = -11638.03504505 atomic energy EATOM = 66845.44081335 --------------------------------------------------- free energy TOTEN = -633.90234997 eV energy without entropy = -633.90234997 energy(sigma->0) = -633.90234997 exchange ACFDT corr. = -0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 6) ---------------------------------------